Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 126102    DOI: 10.1088/1674-1056/24/12/126102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Relationship between Voronoi entropy and the viscosity of Zr36Cu64 alloy melt based on molecular dynamics

Gao Wei (高伟), Feng Shi-Dong (冯士东), Zhang Shi-Liang (张世良), Qi Li (戚力), Liu Ri-Ping (刘日平)
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Abstract  Molecular dynamics simulation is used to investigate the relationship between Voronoi entropy and viscosity for rapid solidification processing of Zr36Cu64 binary alloy melt. The simulation results at different temperatures, cooling rates, and pressures, show that Voronoi entropy is able to accurately describe the relationship of the transition between the cluster structure and the viscosity of Zr36Cu64 binary alloy melt through Voronoi polyhedron analysis. That is, the higher the degree of order of the microstructure, the lower the Voronoi entropy is and the higher the viscosity is. The simulation provides an important reference for studying metallic glass with high glass-forming ability.
Keywords:  alloy melt      molecular dynamics simulation      Voronoi entropy      viscosity  
Received:  01 June 2015      Revised:  12 August 2015      Accepted manuscript online: 
PACS:  61.20.Ja (Computer simulation of liquid structure)  
  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  61.43.Bn (Structural modeling: serial-addition models, computer simulation)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB733000) and the National Natural Science Foundation of China (Grant Nos. 51271161 and 51271162).
Corresponding Authors:  Liu Ri-Ping     E-mail:  riping@ysu.edu.cn

Cite this article: 

Gao Wei (高伟), Feng Shi-Dong (冯士东), Zhang Shi-Liang (张世良), Qi Li (戚力), Liu Ri-Ping (刘日平) Relationship between Voronoi entropy and the viscosity of Zr36Cu64 alloy melt based on molecular dynamics 2015 Chin. Phys. B 24 126102

[1] Greer A L 1995 Science 267 1947
[2] Wang W H 2012 Prog. Mater. Sci. 57 487
[3] Yang L and Guo G Q 2010 Chin. Phys. B 19 126101
[4] Li M Z, Wang C Z, Hao S G, Kramer M J and Ho K M 2009 Phys. Rev. B 80 184201
[5] Peng H L, Li M Z and Wang W H 2011 Phys. Rev. Lett. 106 135503
[6] Hou Z Y, Liu R S, Tian Z A and Wang J G 2011 Chin. Phys. B 20 066102
[7] Bernal J 1960 Nature 185 68
[8] Gaskell P H 1978 Nature 276 484
[9] Feng S D, Qi L, Wang L M, Pan S P, Ma M Z, Zhang X Y, Li G and Liu R P 2015 Acta Mater. 95 236
[10] Zhao Y and Hou X X 2015 Chin. Phys. B 24 096601
[11] Ju Y Y, Zhang Q M, Gong Z Z and Ji G F 2013 Chin. Phys. B 22 083101
[12] Busch R, Bakke E and Johnson W L 1998 Acta Mater. 46 4725
[13] Bi Q L and Lu Y J 2014 Chin. Phys. Lett. 31 106401
[14] Mauro N A, Vogt A J, Johnson M L, Bendert J C, Soklaski R, Yang L and Kelton K F 2013 Acta Mater. 61 7411
[15] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[16] Daw M S and Baskes M I 1983 Phys. Rev. Lett. 50 1285
[17] Pan S P, Qin J Y, Wang W M and Gu T K 2011 Phys. Rev. B 84 092201
[18] Imran M, Hussain F, Rashid M, Cai Y Q and Ahmad S A 2013 Chin. Phys. B 22 096101
[19] Finney J L 1970 Proc. R. Soc. Lond. A 319 479
[20] Du X H and Huang J C 2008 Chin. Phys. B 17 249
[21] Peng H L, Li M Z, Wang W H, Wang C Z and Ho K M 2010 Appl. Phys. Lett. 96 021901
[22] Pan S P, Qin J Y and Gu T K 2010 J. Non-Cryst. Solid 356 1374
[23] Peng H L, Li M Z, Sun B A and Wang W H 2012 J. Appl. Phys. 112 023516
[24] Peng H L, Li M Z and Wang W H 2013 Appl. Phys. Lett. 102 131908
[25] Zhong Y, Zhang Y, Wang J and Zhao H 2013 Chin. Phys. B 22 070505
[26] Feng Y, Goree J, Liu B and Cohen E G D L 2011 Phys. Rev. E 84 046412
[27] Bakke E, Busch R and Johnson W L 1995 Appl. Phys. Lett. 67 3260
[28] Cheng Y Q and Ma E 2008 Appl. Phys. Lett. 93 051910
[29] Li Q K and Li M 2006 Appl. Phys. Lett. 88 241903
[30] Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A and Chen M W 2011 Phys. Rev. Lett. 106 125504
[31] Feng S D, Zhao W, Jiao W, Yu P F, Li G, Qi L and Liu R P 2014 J. Appl. Phys. 116 133520
[32] Zhang X Y, Yuan Z Z and Li D X 2014 J. Alloys Compd. 617 670
[33] Adam G and Gibbs J H 1965 J. Chem. Phys. 43 139
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[7] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[8] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[9] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[10] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[11] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[12] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[13] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[14] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[15] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
No Suggested Reading articles found!