CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Carrier behavior of HgTe under high pressure revealed by Hall effect measurement |
Hu Ting-Jing (胡廷静)a b, Cui Xiao-Yan (崔晓岩)a, Li Xue-Fei (李雪飞)a, Wang Jing-Shu (王婧姝)a, Lü Xiu-Mei (吕秀梅)a, Wang Ling-Sheng (王棱升)a, Yang Jing-Hai (杨景海)a, Gao Chun-Xiao (高春晓)b |
a Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, China; b State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China |
|
|
Abstract We investigate the carrier behavior of HgTe under high pressures up to 23 GPa using in situ Hall effect measurements. As the phase transitions from zinc blende to cinnabar, then to rock salt, and finally to Cmcm occur, all the parameters change discontinuously. The conductivity variation under compression is described by the carrier parameters. For the zinc blende phase, both the decrease of carrier concentration and the increase of mobility indicate the overlapped valence band and conduction band separates with pressure. Pressure causes an increase in the hole concentration of HgTe in the cinnabar phase, which leads to the carrier-type inversion and the lowest mobility at 5.6 GPa. In the phase transition process from zinc blende to rock salt, Te atoms are the major ones in atomic movements in the pressure regions of 1.0-1.5 GPa and 1.8-3.1 GPa, whereas Hg atoms are the major ones in the pressure regions of 1.5-1.8 GPa and 3.1-7.7 GPa. The polar optical scattering of the rock salt phase decreases with pressure.
|
Received: 17 May 2015
Revised: 08 July 2015
Accepted manuscript online:
|
PACS:
|
64.60.-i
|
(General studies of phase transitions)
|
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
07.35.+k
|
(High-pressure apparatus; shock tubes; diamond anvil cells)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB808204), the National Natural Science Foundation of China (Grant Nos. 11374121, 51441006, and 51479220), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11404137), the Program for the Development of Science and Technology of Jilin province, China (Grant Nos. 201201079 and 201215222), the Twentieth Five-Year Program for Science and Technology of Education Department of Jilin Province, China (Grant No. 0520306), and the Open Project Program of State Key Laboratory of Superhard Materials of China (Grant No. 201208). |
Corresponding Authors:
Cui Xiao-Yan, Gao Chun-Xiao
E-mail: xycuimail@163.com;cxgao599@aliyun.com
|
Cite this article:
Hu Ting-Jing (胡廷静), Cui Xiao-Yan (崔晓岩), Li Xue-Fei (李雪飞), Wang Jing-Shu (王婧姝), Lü Xiu-Mei (吕秀梅), Wang Ling-Sheng (王棱升), Yang Jing-Hai (杨景海), Gao Chun-Xiao (高春晓) Carrier behavior of HgTe under high pressure revealed by Hall effect measurement 2015 Chin. Phys. B 24 116401
|
[1] |
Rogach A, Kershaw S, Burt M, Harrison M, Kornowski A, Eychmüller A and Weller H;1999 Adv. Mater. 11 552
|
[2] |
Kim H, Cho K, Song H, Min B, Lee J S, Kim G T, Kim S, Kim S H and Noh T;2003 Appl. Phys. Lett. 83 4619
|
[3] |
Olk P, Buchler B C, Sandoghdar V, Gaponik N, Eychmüller A and Rogach A L;2004 Appl. Phys. Lett. 84 4732
|
[4] |
Mariano A N and Warekois E P;1963 Science 142 672
|
[5] |
Bridgman P W 1940 Proc. Am. Acad. Art Sci. 74 24
|
[6] |
Blair J and Smith A C;1961 Phys. Rev. Lett. 7 124
|
[7] |
Wright N G, McMahon M I, Nelmes R J and San-Miguel A;1993 Phys. Rev. B 48 13111
|
[8] |
Werner A, Hochheimer H D, StrÖssner K and Jayaraman A;1983 Phys. Rev. B 28 3330
|
[9] |
Huang T L and Ruoff A L;1985 Phys. Rev. B 31 5976
|
[10] |
Ohtani A, Seike T, Motobayashi M and Onodera A;1982 J. Phys. Chem. Solids 43 627
|
[11] |
McMahon M I, Wright N G, Allan D R and Nelmes R J;1996 Phys. Rev. B 53 2163
|
[12] |
Briois V, Brouder Ch, Sainctavit Ph, San Miguel A, Itié J P and Polian A 1997 Phys. Rev. B 56 5866
|
[13] |
Huang T L and Ruoff A L;1983 Phys. Status Solidi A 77 K193
|
[14] |
McMahon M I, Nelmes R J, Liu H and Belmonte S A;1996 Phys. Rev. Lett. 77 1781
|
[15] |
Katsuki S and Kunimune M J;1971 Phys. Soc. Jap. 31 337
|
[16] |
Narita S, Egawa M, Suizu K, Katayama M and Mizukami S;1973 Appl. Phys. 2 151
|
[17] |
Moon C Y and Wei S H;2006 Phys. Rev. B 74 045205
|
[18] |
Long D;1956 Phys. Rev. 101 1256
|
[19] |
Saxena A K;1980 Appl. Phys. Lett. 36 79
|
[20] |
Errandonea D, Segura A, Sánchez-Royo J F, Muñoz V, Grima P, Chevy A and Ulrich C;1997 Phys. Rev. B 55 16217
|
[21] |
Boppart H and Wachter P;1984 Phys. Rev. Lett. 53 1759
|
[22] |
van der Pauw L J 1958 Philips Technical Review 20 220
|
[23] |
Hu T J, Cui X Y, Gao Y, Han Y H, Liu C L, Liu B, Liu H W, Ma Y Z and Gao C X;2010 Rev. Sci. Instrum. 81 115101
|
[24] |
Cui X Y, Hu T J, Han Y H, Gao C X, Peng G, Liu C L, Wu B J, Wang Y, Liu B, Ren W B, Li Y, Su N N, Zou G T, Du F and Chen G;2010 Chin. Phys. Lett. 27 036402
|
[25] |
Hu T J, Cui X Y, Li X F, Wang J S, Yang J H and Gao C X;2015 Chin. Phys. Lett. 32 016402
|
[26] |
Han Y H, Luo J F, Gao C X, Ma H, Hao A M, Li Y C, Li D X, Liu J, Li M, Liu H W and Zou G T 2005 Chin. Phys. Lett. 22 1347
|
[27] |
san-miguel A, Wright N G, McMahon M I and Nelmes R J;1995 Phys. Rev. B 51 8731
|
[28] |
Laks D B, Van de Walle C G, Neumark G F, Blöchl P E and Pantelides S T;1992 Phys. Rev. B 45 10965
|
[29] |
Jeon D Y, Gislason H P and Watkins G D;1993 Phys. Rev. B 48 7872
|
[30] |
Iota V and Weinstein B A;1998 Phys. Rev. Lett. 81 4955
|
[31] |
Errandonea D, Segura A, Martínez-García D and Muñoz-San Jose V;2009 Phys. Rev. B 79 125203
|
[32] |
Walukiewicz W;1976 J. Phys. C : Solid State Phys. 9 1945
|
[33] |
Lehoczky S L, Broerman J G, Nelson Donald A and Whitsett Charles R;1974 Phys. Rev. B 9 1598
|
[34] |
Saxena A K;1981 Phys. Rev. B 24 3295
|
[35] |
Brooks H 1951 Phys. Rev. 83 879
|
[36] |
Brooks H 1955 Advan. Electron. Electron Phys. 7 158
|
[37] |
Walukiewicz W;1974 Phys. Rev. Lett. 33 650
|
[38] |
Aukerman L W and Willardson R K;1960 J. Appl. Phys. 31 939
|
[39] |
Aspnes D E;1976 Phys. Rev. B 14 5331
|
[40] |
Saxena A K;1982 Phys. Rev. B 25 5428
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|