Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 047309    DOI: 10.1088/1674-1056/26/4/047309
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structural, electronic, and optical properties of hexagonal and triangular SiC NWs with different diameters

Yan-Jing Li(李彦景)1, Ya-Lin Li(李亚林)2, Shu-Long Li(李树龙)1, Pei Gong(龚裴)1, Xiao-Yong Fang(房晓勇)1
1 School of Science, Yanshan University, Qinhuangdao 066004, China;
2 Liren College, Yanshan University, Qinhuangdao 066004, China
Abstract  Silicon carbide (SiC) is a wideband gap semiconductor with great application prospects, and the SiC nanomaterials have attracted more and more attention because of their unique photoelectric properties. According to the first-principles calculations, we investigate the effects of diameter on the electronic and optical properties of triangular SiC NWs (T-NWs) and hexagonal SiC NWs (H-NWs). The results show that the structure of H-NWs is more stable than T-NWs, and the conduction band bottom of H-NWs is more and more deviated from the valence band top, while the conduction band bottom of T-NWs is closer to the valence band top. What is more, H-NWs and T-NWs have anisotropic optical properties. The result may be helpful in developing the photoelectric materials.
Keywords:  silicon carbon nanowires      stability      electronic properties      optical properties      first-principles theory  
Received:  12 December 2016      Revised:  03 February 2017      Accepted manuscript online: 
PACS:  73.61.Le (Other inorganic semiconductors)  
  81.07.Gf (Nanowires)  
  73.63.Nm (Quantum wires)  
  78.67.Uh (Nanowires)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574261) and the Natural Science Foundation of Hebei Province, China (Grant No. A2015203261).
Corresponding Authors:  Xiao-Yong Fang     E-mail:  fang@ysu.edu.cn

Cite this article: 

Yan-Jing Li(李彦景), Ya-Lin Li(李亚林), Shu-Long Li(李树龙), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇) Structural, electronic, and optical properties of hexagonal and triangular SiC NWs with different diameters 2017 Chin. Phys. B 26 047309

[1] Cheng G, Chang T H, Qin Q, Huang H and Zhu Y 2014 Nano Lett. 14 754
[2] Phan H P, Dinh T, Kozeki T, Nguyen T K, Qamar A, Namazu T, Nguyen NT and Dao D V 2016 IEEE Electron Dev. Lett. 37 1029
[3] Gali A 2006 Phys. Rev. B 73 245415
[4] Xiong S, Latour B, Ni Y, Volz S and Chalopin Y 2015 Phys. Rev. B 91 224307
[5] Konstantinos T, Thibaut B, Ni Y X, Samy M, Xanthippi Z, Yann C, Patrice C and Sebastian V 2013 Phys. Rev. B 87 125410
[6] Mukherjee S and Ray A K 2008 J. Comput. Theor. Nanosci. 5 1210
[7] Medintz I L, Uyeda H T, Goldman E R and Mattoussi H 2005 Nat. Mater. 4 435
[8] Zhu J, Wu Y D, Chen H T, Xiong X and Chen X B 2012 Micro Nano Lett. 7 974
[9] Duan W, Yin X, Cao F, Jia Y, Xie Y, Greil P and Travitzky N 2015 Mater. Lett. 159 257
[10] Wyckoff W G 1963 Crystal Structures (John Wiley And Sons) p. 1
[11] Ivanov P A and Chelnokov V E 1992 Semiconductor. Sci. Technol. 7 863
[12] Lambrecht W R L, Segall B, Yoganathan M, Suttrop W, Devaty R P, Choyke W J, Edmond J A, Powell J A and Alouani M 1994 Phys. Rev. B 50 722
[13] Yao Y, Lee S T and Li F H 2003 Chem. Phys. Lett. 381 628
[14] Bouziane K, Mamor M, Elzain M, Djemia and Chérif S M 2008 Phys. Rev. B 78 195305
[15] Zhang W H, Zhang F C, Zhang Z Y, Lu S Y and Yang Y N 2010 Sci. China-Phys. Mech. Astron. 53 1582
[16] Laref A, Alshammari N, Laref S and Luo S J 2014 Dalton Trans. 43 5505
[17] Zhao J, Meng A and Zhang M 2015 Phys. Chem. Chem. Phys. 17 28658
[18] Yang T, Zhang L and Hou X 2016 Sci. Rep. 6 24872
[19] Fan J Y and Chu P K 2014 Engineering Materials and Processes (Switzerland Springer) p. 258
[20] Li H, Wu J and Wang Z M 2013 Silicon-based Nanomaterials, Springer Series in Materials Science 187 pp. 139-157
[21] Ito Tomonori, Kosuke Sano, Toru Akiyama, et al. 2006 Thin Solid Films 508 243
[22] Feng G Y, Fang X Y, Wang J J, Zhou Y, Lu R, Yuan J and Cao M S 2010 Physica B 405 2625
[23] Rosso E F and Baierle R J 2013 Chem. Phys. Lett. 568-569 140
[24] Yu X X, Zhou Y, Liu J, Jin H B, Fang X Y and Cao M 2015 Chin. Phys. B 24 127307
[25] Zheng H M, Fang X Y, Cai L X, Yin A C, Jin H B, Yu X X and Cao M S 2014 Chin. Phys. B 23 126102
[26] Wang K, Fang X Y, Li Y Q, Yin A C, Jin H B, Yuan J and Cao M S 2012 J. Appl. Phys. 112 033508
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[8] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[9] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[10] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[11] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[12] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[13] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[14] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[15] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
No Suggested Reading articles found!