|
|
Determination of ion quantity by using low-temperature ion density theory and molecular dynamics simulation |
Du Li-Jun (杜丽军)a b c d, Song Hong-Fang (宋红芳)a b c d, Li Hai-Xia (李海霞)a b c d, Chen Shao-Long (陈邵龙)a b c d, Chen Ting (陈婷)a b c d, Sun Huan-Yao (孙焕尧)a b c, Huang Yao (黄垚)a b c, Tong Xin (童昕)a b c, Guan Hua (管桦)a b c, Gao Ke-Lin (高克林)a b c |
a State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute ofPhysics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; b Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; c Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China; d University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract In this paper, we report a method by which the ion quantity is estimated rapidly with an accuracy of 4%. This finding is based on the low-temperature ion density theory and combined with the ion crystal size obtained from experiment with the precision of a micrometer. The method is objective, straightforward, and independent of the molecular dynamics (MD) simulation. The result can be used as the reference for the MD simulation, and the method can improve the reliability and precision of MD simulation. This method is very helpful for intensively studying ion crystal, such as phase transition, spatial configuration, temporal evolution, dynamic character, cooling efficiency, and the temperature limit of the ions.
|
Received: 11 June 2015
Revised: 28 July 2015
Accepted manuscript online:
|
PACS:
|
37.10.Ty
|
(Ion trapping)
|
|
64.70.kp
|
(Ionic crystals)
|
|
94.20.Fg
|
(Plasma temperature and density)
|
|
52.65.Yy
|
(Molecular dynamics methods)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821301 and 2010CB832803), the National Natural Science Foundation of China (Grant Nos. 11004222 and 91121016), and the Chinese Academy of Sciences. |
Corresponding Authors:
Guan Hua
E-mail: guanhua@wipm.ac.cn
|
Cite this article:
Du Li-Jun (杜丽军), Song Hong-Fang (宋红芳), Li Hai-Xia (李海霞), Chen Shao-Long (陈邵龙), Chen Ting (陈婷), Sun Huan-Yao (孙焕尧), Huang Yao (黄垚), Tong Xin (童昕), Guan Hua (管桦), Gao Ke-Lin (高克林) Determination of ion quantity by using low-temperature ion density theory and molecular dynamics simulation 2015 Chin. Phys. B 24 113703
|
[1] |
Slattery W L, Doolen G D and Dewiit H E;1980 Phys. Rev. A 21 2087
|
[2] |
Mitchell T B, Bollinger J J, Dubin D H E, Huang X P, Itano W M and Baughman R H;1998 Science 282 1290
|
[3] |
Schmöger L, Versolato O O, Schwarz M, Kohnen M, Windberger A, Piest B, Feuchtenbeiner S, Gutierrez J P, Leopold T, Micke P, Hansen A K, Baumann T M, Drewsen M, Ullrich J, Schmidt P O and López-Urrutia J R C;2015 Science 347 1233
|
[4] |
Germann M, Tong X and Willitsch S;2014 Nat. Phys. 10 820
|
[5] |
Ostendorf A, Zhang C B, Wilson M A, Offenberg D, Roth B and Schiller S;2006 Phys. Rev. Lett. 97 243005
|
[6] |
Ulm S, Roβ nagel J, Jacob G, Degünther C, Dawkins S T, Poschinger U G, Nigmatullin R, Retzker A, Plenio M B, Schmidt-Kaler F and Singer K;2013 Nat. Commun. 4 2290
|
[7] |
Pyka K, Keller J, Partner H L, Nigmatullin R, Burgermeister T, Meier D M, Kuhlmann K, Retzker A, Plenio M B, Zurek W H, Campo A D and Mehlstäubler T E;2013 Nat. Commun. 4 2291
|
[8] |
Takashi B and Izumi W;2002 J. Appl. Phys. 92 4109
|
[9] |
Roth B, Blythe P and Schiller S;2007 Phys. Rev. A 75 023402
|
[10] |
Du L J, Chen T, Song H F, Chen S L, LI H X, Huang Y, Tong X, Guan H and Gao K L;2015 Chin. Phys. B 24 083702
|
[11] |
Chen T, Du L J, Song H F, Liu P L, Huang Y, Tong X, Guan H and Gao K L;2014 Chin. Phys. B 23 123702 [RefAutoNo] Wineland D J, Drullinger R E and Walls F L;1978 Phys. Rev. Lett. 40 1639 [RefAutoNo] Neuhauser W, Hohenstatt M, Toschek P and Dehmelt H G;1978 Phys. Rev. Lett. 41 233 [RefAutoNo] Hänsch T W and Schawlow A L;1975 Opt. Commun. 13 68
|
[12] |
Gerlich D;1992 Adv. Chem. Phys. 82 1
|
[13] |
Champenois C;2009 J. Phys. B 42 154002
|
[14] |
Wineland D J, Bollinger J J, Itano W M and Prestage J D 1985 J. Opt. Soc. Am. B 2 1721
|
[15] |
Dehmelt H G;1968 Adv. At. Mol. Phys. 3 53
|
[16] |
Prestage J D, Williams A, Maleki L, Djomehri M J and Harabetian E;1991 Phys. Rev. Lett. 66 2964
|
[17] |
Zhang C B, Offenberg D, Roth B, Wilson M A and Schiller S;2007 Phys. Rev. A 76 012719
|
[18] |
Dehmelt H G 1968 Adv. At. Mol. Phys. 3 53
|
[19] |
Prestage J D, Williams A, Maleki L, Djomehri M J and Harabetian E 1991 Phys. Rev. Lett. 66 2964
|
[20] |
Zhang C B, Offenberg D, Roth B, Wilson M A and Schiller S 2007 Phys. Rev. A 76 012719
|
[21] |
Kielpinski D, King B E, Myatt C J, Sackett C A, Turchette Q A, Itano W M, Monroe C and Wineland D J 2000 Phys. Rev. A 61 032310
|
[22] |
Verlet L 1967 Phys. Rev. 159 98
|
[23] |
Verlet L 1968 Phys. Rev. 165 201
|
[24] |
Zhang M Q and Skeel R D 1995 J. Comput. Chem. 16 365
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|