Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 113703    DOI: 10.1088/1674-1056/24/11/113703
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Determination of ion quantity by using low-temperature ion density theory and molecular dynamics simulation

Du Li-Jun (杜丽军)a b c d, Song Hong-Fang (宋红芳)a b c d, Li Hai-Xia (李海霞)a b c d, Chen Shao-Long (陈邵龙)a b c d, Chen Ting (陈婷)a b c d, Sun Huan-Yao (孙焕尧)a b c, Huang Yao (黄垚)a b c, Tong Xin (童昕)a b c, Guan Hua (管桦)a b c, Gao Ke-Lin (高克林)a b c
a State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute ofPhysics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
b Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
c Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China;
d University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  In this paper, we report a method by which the ion quantity is estimated rapidly with an accuracy of 4%. This finding is based on the low-temperature ion density theory and combined with the ion crystal size obtained from experiment with the precision of a micrometer. The method is objective, straightforward, and independent of the molecular dynamics (MD) simulation. The result can be used as the reference for the MD simulation, and the method can improve the reliability and precision of MD simulation. This method is very helpful for intensively studying ion crystal, such as phase transition, spatial configuration, temporal evolution, dynamic character, cooling efficiency, and the temperature limit of the ions.
Keywords:  ion crystal      ion quantity      low-temperature density model      molecular dynamics simulation  
Received:  11 June 2015      Revised:  28 July 2015      Accepted manuscript online: 
PACS:  37.10.Ty (Ion trapping)  
  64.70.kp (Ionic crystals)  
  94.20.Fg (Plasma temperature and density)  
  52.65.Yy (Molecular dynamics methods)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821301 and 2010CB832803), the National Natural Science Foundation of China (Grant Nos. 11004222 and 91121016), and the Chinese Academy of Sciences.
Corresponding Authors:  Guan Hua     E-mail:  guanhua@wipm.ac.cn

Cite this article: 

Du Li-Jun (杜丽军), Song Hong-Fang (宋红芳), Li Hai-Xia (李海霞), Chen Shao-Long (陈邵龙), Chen Ting (陈婷), Sun Huan-Yao (孙焕尧), Huang Yao (黄垚), Tong Xin (童昕), Guan Hua (管桦), Gao Ke-Lin (高克林) Determination of ion quantity by using low-temperature ion density theory and molecular dynamics simulation 2015 Chin. Phys. B 24 113703

[1] Slattery W L, Doolen G D and Dewiit H E;1980 Phys. Rev. A 21 2087
[2] Mitchell T B, Bollinger J J, Dubin D H E, Huang X P, Itano W M and Baughman R H;1998 Science 282 1290
[3] Schmöger L, Versolato O O, Schwarz M, Kohnen M, Windberger A, Piest B, Feuchtenbeiner S, Gutierrez J P, Leopold T, Micke P, Hansen A K, Baumann T M, Drewsen M, Ullrich J, Schmidt P O and López-Urrutia J R C;2015 Science 347 1233
[4] Germann M, Tong X and Willitsch S;2014 Nat. Phys. 10 820
[5] Ostendorf A, Zhang C B, Wilson M A, Offenberg D, Roth B and Schiller S;2006 Phys. Rev. Lett. 97 243005
[6] Ulm S, Roβ nagel J, Jacob G, Degünther C, Dawkins S T, Poschinger U G, Nigmatullin R, Retzker A, Plenio M B, Schmidt-Kaler F and Singer K;2013 Nat. Commun. 4 2290
[7] Pyka K, Keller J, Partner H L, Nigmatullin R, Burgermeister T, Meier D M, Kuhlmann K, Retzker A, Plenio M B, Zurek W H, Campo A D and Mehlstäubler T E;2013 Nat. Commun. 4 2291
[8] Takashi B and Izumi W;2002 J. Appl. Phys. 92 4109
[9] Roth B, Blythe P and Schiller S;2007 Phys. Rev. A 75 023402
[10] Du L J, Chen T, Song H F, Chen S L, LI H X, Huang Y, Tong X, Guan H and Gao K L;2015 Chin. Phys. B 24 083702
[11] Chen T, Du L J, Song H F, Liu P L, Huang Y, Tong X, Guan H and Gao K L;2014 Chin. Phys. B 23 123702 [RefAutoNo] Wineland D J, Drullinger R E and Walls F L;1978 Phys. Rev. Lett. 40 1639 [RefAutoNo] Neuhauser W, Hohenstatt M, Toschek P and Dehmelt H G;1978 Phys. Rev. Lett. 41 233 [RefAutoNo] Hänsch T W and Schawlow A L;1975 Opt. Commun. 13 68
[12] Gerlich D;1992 Adv. Chem. Phys. 82 1
[13] Champenois C;2009 J. Phys. B 42 154002
[14] Wineland D J, Bollinger J J, Itano W M and Prestage J D 1985 J. Opt. Soc. Am. B 2 1721
[15] Dehmelt H G;1968 Adv. At. Mol. Phys. 3 53
[16] Prestage J D, Williams A, Maleki L, Djomehri M J and Harabetian E;1991 Phys. Rev. Lett. 66 2964
[17] Zhang C B, Offenberg D, Roth B, Wilson M A and Schiller S;2007 Phys. Rev. A 76 012719
[18] Dehmelt H G 1968 Adv. At. Mol. Phys. 3 53
[19] Prestage J D, Williams A, Maleki L, Djomehri M J and Harabetian E 1991 Phys. Rev. Lett. 66 2964
[20] Zhang C B, Offenberg D, Roth B, Wilson M A and Schiller S 2007 Phys. Rev. A 76 012719
[21] Kielpinski D, King B E, Myatt C J, Sackett C A, Turchette Q A, Itano W M, Monroe C and Wineland D J 2000 Phys. Rev. A 61 032310
[22] Verlet L 1967 Phys. Rev. 159 98
[23] Verlet L 1968 Phys. Rev. 165 201
[24] Zhang M Q and Skeel R D 1995 J. Comput. Chem. 16 365
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[7] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[8] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[14] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
[15] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
No Suggested Reading articles found!