Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 108505    DOI: 10.1088/1674-1056/24/10/108505
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A threshold voltage model of short-channel fully-depleted recessed-source/drain (Re-S/D) SOI MOSFETs with high-k dielectric

Gopi Krishna Saramekalaa, Sarvesh Dubeyb, Pramod Kumar Tiwaria
a Department of Electronics and Communication Engineering, National Institute of Technology, Rourkela-769008, Odisha, India;
b Shri Ramswaroop Memorial University, Barabanki-225003, U. P., India
Abstract  

In this paper, a surface potential based threshold voltage model of fully-depleted (FD) recessed-source/drain (Re-S/D) silicon-on-insulator (SOI) metal-oxide semiconductor field-effect transistor (MOSFET) is presented while considering the effects of high-K gate-dielectric material induced fringing-field. The two-dimensional (2D) Poisson's equation is solved in a channel region in order to obtain the surface potential under the assumption of the parabolic potential profile in the transverse direction of the channel with appropriate boundary conditions. The accuracy of the model is verified by comparing the model's results with the 2D simulation results from ATLAS over a wide range of channel lengths and other parameters, including the dielectric constant of gate-dielectric material.

Keywords:  recessed-source/drain (Re-S/D)      high-k gate-material      fringing field and SCEs  
Received:  27 February 2015      Revised:  06 May 2015      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: 

The author, Pramod Kumar Tiwari, was supported by the Science and Engineering Research Board (SERB), Department of Science and Technology, Ministry of Human Resource and Development, Government of India under Young Scientist Research (Grant No. SB/FTP/ETA-415/2012).

Corresponding Authors:  Pramod Kumar Tiwari     E-mail:  tiwarip@nitrkl.ac.in

Cite this article: 

Gopi Krishna Saramekala, Sarvesh Dubey, Pramod Kumar Tiwari A threshold voltage model of short-channel fully-depleted recessed-source/drain (Re-S/D) SOI MOSFETs with high-k dielectric 2015 Chin. Phys. B 24 108505

[1] Zhang Z, Zhang S and Chan M 2004 IEEE Electron Dev. Lett. 25 740
[2] Ke W, Han X, Li D, Wang X, Zhang T, Han R and Zhang S 2007 Semicond. Sci. Technol. 22 577
[3] Svilicic B, Jovanovic V and Suligoj 2009 Solid-State Electron. 53 540
[4] Kumar A and Tiwari P 2014 Solid-State Electron. 95 52
[5] Saramekala G K, Santra A, Dubey S, Jit S and Tiwari P K 2013 Superlattices Microstruct. 60 580
[6] Svilicic B, Jovanovic V and Suligoj 2010 Solid-State Electron. 54 545
[7] Saramekala G K, Santra A, Kumar M, Dubey S, Jit S and Tiwari P K 2014 J. Comp. Elec. 13 467
[8] Ahn C, Cho W, Im K, Yang J, Baek I, Lee S and Baek S (U.S. Patent) US20060131648 A1 [2006-06-22]
[9] Hanafi H I, Boyd D C, Chan K K, Natzle W and Shi L (U.S. Patent) 6841831 B2 [2005-01-11]
[10] Kim S D, Johnson J B , Yuan J and Woo J C S 2004 Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices, September 2-4, 2004, Munich, Germany, p. 247
[11] Hanafi H I, Boyd D C, Chan K K, Natzle W and Shi L (U.S. Patent) US6841831 B2 [2005 1 11]
[12] Takeda H, Takeuchi K, and Hayashi Y 2010 Proceedings of IEEE Symposium on VLSI Technology, p. 63
[13] Keyes R W 2005 Rep. Prog. Phys. 68 2701
[14] Tripathi S L, Mishra R and Mishra R A 2012 J. Electron Dev. 16 1388
[15] Wilk G D, Wallace R M and Anthony J M 2001 Appl. Phys. 89 5243
[16] Slimani S and Djellouli B 2011 Proceedings of the m4th International Conference on Advances in Circuits, August 21-27, 2011, Nice/Saint Laurent du Var, France, p. 38
[17] Liu H X and Ma F 2012 Chin. Phys. Lett. 29 127301
[18] Ma F, Liu H X, Kuang Q W and Fan J B 2012 Chin. Phys. B 21 057304
[19] Ma F, Liu H X, Kuang Q W and Fan J B 2012 Chin. Phys. B 21 057305
[20] Kumar M J, Gupta S K and Venkataraman V 2006 IEEE Trans. Electron Dev. 53 706
[21] Kamchouchi H and Zaky A 1975 Appl. Phys. 8 1365
[22] Liu X, Jin X and Lee J H 2009 Solid-State Electron. 53 1041
[23] Mohapatra N R, Desai M P, Narendra S G and Rao V R 2003 IEEE Trans. Electron Dev. 50 959
[24] Liu X, Kang J, Sun L, Han R and Wang J 2002 IEEE Electron Dev. Lett. 23 270
[25] Imam M A, Osman M A and Osman A 1995 Microelectron. Reliab. 39 487
[26] Thean V Y, Goolsby B, Nguyen B Y, Nguyen T and Stephens T (U.S. Patent) US20060148196 A1 [2006-07-06]
[27] Bin Y (U.S. Patent) 6420218 B1 [2002- 07-16]
[28] Ahn C, Cho W, Im K, Yang J, Baek I, Lee S and Baek (U.S. Patent) US20060131648 A1 [2006 06 22]
[29] Goolsby B J, Nguyen B y, Nguyen T T, Stephens T A and Thean V Y (WO Patent) WO2006073624 A1 [2006 07 13]
[30] ATLAS User's Manual, Silvaco International, Santa Clara, CA (2012)
[31] Granzner R, Polyakov V M, Schwierz F, Kittler M and Doll T 2003 Physica E: Low-dimensional Systems and Nanostructures 19 33
[32] Young K K 1989 IEEE Trans. Electron Dev. 36 399
[33] Tsutsui G, Saitoh M, Nagumo T and Hiramoto T 2005 IEEE Trans. Nanotechnol. 4 369
[34] Dort M J V, Woerlee P H, Walker A J, Juffermans C A H and Lifka H 1992 IEEE Trans Electron Dev. 39 932
[35] Conde A O, Sanchez F J G, Liou J J, Cerdeira A, Estrada M and Yue Y 2002 Microelectronics Reliability 42 583
[1] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[2] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[3] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[4] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[5] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[6] Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2022, 31(12): 128105.
[7] Bioinspired tactile perception platform with information encryption function
Zhi-Wen Shi(石智文), Zheng-Yu Ren(任征宇), Wei-Sheng Wang(王伟胜), Hui Xiao(肖惠), Yu-Heng Zeng(曾俞衡), and Li-Qiang Zhu(竺立强). Chin. Phys. B, 2022, 31(9): 098506.
[8] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[9] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[10] Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
Tianyuan Song(宋天源), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Qi Shan(单奇). Chin. Phys. B, 2022, 31(8): 088101.
[11] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[12] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[13] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[14] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[15] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
No Suggested Reading articles found!