Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 108203    DOI: 10.1088/1674-1056/24/10/108203
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Closed-form solution of mid-potential between two parallel charged plates with more extensive application

Shang Xiang-Yu (商翔宇)a b, Yang Chen (杨晨)b, Zhou Guo-Qing (周国庆)a
a State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221000, China;
b School of Mechanics & Civil Engineering, China University of Mining and Technology, Xuzhou 221000, China
Abstract  

Efficient calculation of the electrostatic interactions including repulsive force between charged molecules in a biomolecule system or charged particles in a colloidal system is necessary for the molecular scale or particle scale mechanical analyses of these systems. The electrostatic repulsive force depends on the mid-plane potential between two charged particles. Previous analytical solutions of the mid-plane potential, including those based on simplified assumptions and modern mathematic methods, are reviewed. It is shown that none of these solutions applies to wide ranges of inter-particle distance from 0 to 10 and surface potential from 1 to 10. Three previous analytical solutions are chosen to develop a semi-analytical solution which is proven to have more extensive applications. Furthermore, an empirical closed-form expression of mid-plane potential is proposed based on plenty of numerical solutions. This empirical solution has extensive applications, as well as high computational efficiency.

Keywords:  charged plate      mid-plane potential      semi-analytical solution      empirical closed-formed solution  
Received:  22 January 2015      Revised:  06 May 2015      Accepted manuscript online: 
PACS:  82.45.Gj (Electrolytes)  
  82.70.Dd (Colloids)  
Fund: 

Project supported by the National Key Basic Research Program of China (Grant No. 2012CB026103), the National Natural Science Foundation of China (Grant No. 51009136), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011212).

Corresponding Authors:  Shang Xiang-Yu     E-mail:  xyshang@cumt.edu.cn

Cite this article: 

Shang Xiang-Yu (商翔宇), Yang Chen (杨晨), Zhou Guo-Qing (周国庆) Closed-form solution of mid-potential between two parallel charged plates with more extensive application 2015 Chin. Phys. B 24 108203

[1] Perutz M F 1978 Science 201 1187
[2] Krotova M K, Vasilevskaya V V, Makita N Yoshikawa K and Khokhlov A R 2010 Phys. Rev. Lett. 105 128302
[3] Warshel A 1981 Acc. Chem. Res. 14 284
[4] Davis M E and McCammon J A 1990 Chem. Rev. 90 509
[5] Sheinerman F B Norel R and Honig B 2000 Curr. Opin. Struct. Biol. 10 153
[6] Morozov A V, Kortemme T and Baker D 2003 Phys. Chem. B 107 2075
[7] Warshel A, Sharma P K, Kato M and Parson W W 2006 Biochim. Biophys. Acta 1764 1647
[8] Lu B Z, Zhou Y C, Holst M J and McCammon J A 2008 Commun. Comput. Phys. 3 973
[9] McCammon J A, Northrup S H and Allison S A 1986 J. Phys. Chem. 90 3901
[10] Gabdoulline R R and Wade R C 1997 Biophys. J. 72 1917
[11] Gabdoulline R R and Wade R C 1998 Methods Enzymol. 14 329
[12] Dong F, Olsen B and Bakern N A 2008 Methods Cell. Biol. 84 843
[13] Langmuir I 1938 J. Chem. Phys. 6 893
[14] Verwey E J W and Overbeek J Th G 1948 Theory of the stability of lyophobic colloids (Amsterdam: Elsevier)
[15] Derjaguin B V 1954 Discuss. Faraday Soc.18 85
[16] Ohshima H Healy T W and White Lee R 1982 J. Colloid Interface Sci. 90 17
[17] Wang H P and Jin J 1996 J. Colloid Interface Sci. 177 380
[18] Anandrajah A and Lu N 1991 Int. J. Numer. Anal. Methods Geomech. 15 683
[19] Anandrajah A and Chen J 1994 J. Colloid Interface Sci. 168 111
[20] Katti D R, Matar M I, Katti K S and Amarasinghe P M 2009 KSCE J. Civ. Eng. 13 243
[21] Honig B and Nicholls A 1995 Science 268 1144
[22] Tong C H and Zhu Y J 2010 Chin. Phys. B 19 048702
[23] Hsu J P and Kuo Y C 1995 J. Colloid Interface Sci. 170 220
[24] Zhou S 1998 J. Colloid Interface Sci. 208 347
[25] Luo G X Feng R J, Jin J and Wang H P 2001 J. Colloid Interface Sci. 241 81
[26] Luo G X, Wang H P and Jin J 2001 Langmuir. 17 2167
[27] Wang Q D, Luo G X, Wang H P, Hou C Y and Jin J 2006 J. Colloid Interface Sci. 297 845
[28] Chen Z and Singh R K 2002 J. Colloid Interface Sci. 245 301
[29] Tuinier R 2003 J. Colloid Interface Sci. 258 45
[30] Lin S H, Hsu J P, Tseng S and Chen C J 2005 J. Colloid Interface Sci. 281 255
[31] Wang Z W ,Yi X Z, Li G Z, Guan D R and Lou A J 2001 Chem. Phys. 274 57
[32] Wang Z W, Guo B M, Zhang G X and Yu H X 2006 Sci. China Chem. 49 219
[33] Xing X J 2011 Phys. Rev. E 83 041410
[34] Zhou S and Wu H 2012 Colloid Polym. Sci. 290 1165
[35] Zhou S and Zhang G 2013 Colloid Polym. Sci. 291 879
[1] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[2] Copper ion beam emission in solid electrolyte Rb4Cu16I6.5Cl13.5
Tushagu Abudouwufu(吐沙姑·阿不都吾甫), Xiangyu Zhang (张翔宇), Wenbin Zuo (左文彬), Jinbao Luo(罗进宝), Yueqiang Lan(兰越强), Canxin Tian (田灿鑫), Changwei Zou(邹长伟), Alexander Tolstoguzov, and Dejun Fu(付德君). Chin. Phys. B, 2022, 31(4): 040704.
[3] DFT study of solvation of Li + /Na + in fluoroethylene carbonate/vinylene carbonate/ethylene sulfite solvents for lithium/sodium-based battery
Qi Liu(刘琦, Guoqiang Tan(谭国强), Feng Wu(吴锋), Daobin Mu(穆道斌), and Borong Wu(吴伯荣). Chin. Phys. B, 2021, 30(3): 038203.
[4] Imaging the diffusion pathway of Al3+ ion in NASICON-type (Al0.2Zr0.8)20/19Nb(PO4)3 as electrolyte for rechargeable solid-state Al batteries
Jie Wang(王捷), Chun-Wen Sun(孙春文), Yu-Dong Gong(巩玉栋), Huai-Ruo Zhang(张怀若), Jose Antonio Alonso, María Teresa Fernández-Díaz, Zhong-Lin Wang(王中林), John B Goodenough. Chin. Phys. B, 2018, 27(12): 128201.
[5] Discovery and design of lithium battery materials via high-throughput modeling
Xuelong Wang(王雪龙), Ruijuan Xiao(肖睿娟), Hong Li(李泓), Liquan Chen(陈立泉). Chin. Phys. B, 2018, 27(12): 128801.
[6] A high-performance rechargeable Li-O2 battery with quasi-solid-state electrolyte
Jia-Yue Peng(彭佳悦), Jie Huang(黄杰), Wen-Jun Li(李文俊), Yi Wang(王怡), Xiqian Yu(禹习谦), Yongsheng Hu(胡勇胜), Liquan Chen(陈立泉), Hong Li(李泓). Chin. Phys. B, 2018, 27(7): 078201.
[7] Low-temperature synthesis of apatite-type La9.33Ge6O26 as electrolytes with high conductivity
Guang-Chao Yin(尹广超), Guo-Dong Zhao(赵国栋), Hong Yin(殷红), Fu-Chao Jia(贾福超), Qiang Jing(景强), Sheng-Gui Fu(付圣贵), Mei-Ling Sun(孙美玲), Wei Gao(高伟). Chin. Phys. B, 2018, 27(4): 048201.
[8] Pressure-induced structural evolution of apatite-type La9.33Si6O26
Guangchao Yin(尹广超), Hong Yin(殷红), Meiling Sun(孙美玲), Wei Gao(高伟). Chin. Phys. B, 2018, 27(1): 018202.
[9] A low cost composite quasi-solid electrolyte of LATP, TEGDME, and LiTFSI for rechargeable lithium batteries
Jie Huang(黄杰), Jia-Yue Peng(彭佳悦), Shi-Gang Ling(凌仕刚), Qi Yang(杨琪), Ji-Liang Qiu(邱纪亮), Jia-Ze Lu(卢嘉泽), Jie-Yun Zheng(郑杰允), Hong Li(李泓), Li-Quan Chen(陈立泉). Chin. Phys. B, 2017, 26(6): 068201.
[10] Particles inside electrolytes with ion-specific interactions, their effective charge distributions and effective interactions
Mingnan Ding(丁茗楠), Yihao Liang(梁逸浩), Xiangjun Xing(邢向军). Chin. Phys. B, 2016, 25(10): 108201.
[11] All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science
Xiayin Yao(姚霞银), Bingxin Huang(黄冰心), Jingyun Yin(尹景云), Gang Peng(彭刚), Zhen Huang(黄祯), Chao Gao(高超), Deng Liu(刘登), Xiaoxiong Xu(许晓雄). Chin. Phys. B, 2016, 25(1): 018802.
[12] Interfacial transport in lithium-ion conductors
Shaofei Wang(王少飞) and Liquan Chen(陈立泉). Chin. Phys. B, 2016, 25(1): 018202.
[13] Crystal structure and ionic conductivity of Mg-doped apatite-type lanthanum silicates La10Si6-xMgxO27-x(x=0-0.4
Yin Guang-Chao (尹广超), Yin Hong (殷红), Zhong Lin-Hong (仲林红), Sun Mei-Ling (孙美玲), Zhang Jun-Kai (张俊凯), Xie Xiao-Jun (谢晓君), Cong Ri-Dong (丛日东), Wang Xin (王欣), Gao Wei (高伟), Cui Qi-Liang (崔啟良). Chin. Phys. B, 2014, 23(4): 048202.
[14] Aggregation of fullerene (C60) nanoparticle:A molecular-dynamic study
He Su-Zhen (何素贞), Merlitz Holger, Wu Chen-Xu (吴晨旭). Chin. Phys. B, 2014, 23(4): 048201.
[15] Investigation of the free volume and ionic conducting mechanism of poly(ethylene oxide)-LiClO4 polymeric electrolyte by positron annihilating lifetime spectroscopy
Gong Jing (龚静), Gong Zhen-Li (宫振丽), Yan Xiao-Li (闫晓丽), Gao Shu (高舒), Zhang Zhong-Liang (张忠良), Wang Bo (王波). Chin. Phys. B, 2012, 21(10): 107803.
No Suggested Reading articles found!