Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 128801    DOI: 10.1088/1674-1056/27/12/128801
Special Issue: TOPICAL REVIEW — Physics research in materials genome
TOPICAL REVIEW—Physics research in materials genome Prev  

Discovery and design of lithium battery materials via high-throughput modeling

Xuelong Wang(王雪龙)1,2, Ruijuan Xiao(肖睿娟)1, Hong Li(李泓)1, Liquan Chen(陈立泉)1
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

This paper reviews the rapid progress in the field of high-throughput modeling based on the Materials Genome Initiative, and its application in the discovery and design of lithium battery materials. It offers examples of screening, optimization and design of electrodes, electrolytes, coatings, additives, etc. and the possibility of introducing the machine learning method into material design. The application of the material genome method in the development of lithium battery materials provides the possibility to speed up the upgrading of new candidates in the discovery of lots of functional materials.

Keywords:  Materials Genome Initiative      lithium battery materials      high-throughput simulations      material design  
Received:  15 May 2018      Revised:  18 September 2018      Accepted manuscript online: 
PACS:  88.30.gg (Design and simulation)  
  82.47.Aa (Lithium-ion batteries)  
  82.45.Gj (Electrolytes)  
  82.45.Fk (Electrodes)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51772321), the Beijing Science and Technology Project (Grant No. D171100005517001), the National Key Research and Development Plan (Grant No. 2017YFB0701602), and the Youth Innovation Promotion Association (Grant No. 2016005).

Corresponding Authors:  Ruijuan Xiao     E-mail:  rjxiao@iphy.ac.cn

Cite this article: 

Xuelong Wang(王雪龙), Ruijuan Xiao(肖睿娟), Hong Li(李泓), Liquan Chen(陈立泉) Discovery and design of lithium battery materials via high-throughput modeling 2018 Chin. Phys. B 27 128801

[1] Tarascon J M, Arm and M 2001 Nature 414 359
[2] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
[3] Novak P, Muller K, Santhanam K S V and Haas O 1997 Chem. Rev. 97 272
[4] Li H, Huang X J, Chen L Q, Wu Z G and Liang Y 1999 Electrochem. Solid-State Lett. 2 547
[5] Huang Y H and Goodenough J B 2008 Chem. Mater. 20 7237
[6] Knauth P 2009 Solid State Ionics 180 911
[7] Takada K 2013 Acta Mater. 61 759
[8] Yao X, Huang B, Yin J, Peng G, Huang Z, Gao C, Liu D and Xu X 2016 Chin. Phys. B 25 018802
[9] Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C Y and Xiao R J 2016 Chin. Phys. B 25 018212
[10] Yada C, Lee C E, Laughman D, Hannah L, Iba H and Hayden B E 2015 J. Electrochem. Soc. 162 A722
[11] Xiang X D, Sun X, Briceno G, Lou Y, Wang K A, Chang H, Wallace-Freedman W G, Chen S W and Schultz P G 1995 Science 268 1738
[12] Curtarolo S, Hart G L W, Nardelli M B, Mingo N, Sanvito S and Levy O 2013 Nat. Mater. 12 191
[13] MacEachern L, Dunlap R A and Obrov M N 2015 J. Non-Cryst. Solids 409 183
[14] Borhani-Haghighi S, Kieschnick M, Motemani Y, Savan A, Rogalla D, Becker H W, Meijer J and Ludwig A 2013 ACS Comb. Sci. 15 401
[15] Beal M S, Hayden B E, Gall T L, Lee C E, Lu X, Mirsaneh M, Mormiche C, Pasero D, Smith D C A, Weld A, Yada C and Yokoishi S 2011 ACS Comb. Sci. 13 375
[16] Cartier C, Feng Z, Faulk J and Scherson D 2015 ECS ElectroChem. Lett. 4 A110
[17] Schiffmann J G, Kopp J, Geisler G, Kröninger J and Wüllen L 2013 Solid State Nucl. Magn. Reson. 49-50 23
[18] Schiele A, Hatsukade T, Berkes B B, Hartmann P, Brezesinski T and Janek J 2017 Anal. Chem. 89 8122
[19] Alberi K, Nardelli M B, Zakutayev A, et al. 2018 J. Phys. D: Appl. Phys. (in publication)
[20] Morgan D, Ceder G and Curtarolo S 2005 Meas. Sci. Technol. 16 296
[21] Ong S P, Richards W D, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A and Ceder G 2013 Comput. Mater. Sci. 68 314
[22] Jain A, Ping S, Chen W, Medasani B, Qu X, Kocher1 M, Brafman M, Petretto G, Rignanese G M, Hautier G, Gunter D and Persson K A 2015 Concurrency Computat.: Pract. Exper. 27 5037
[23] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G and Persson K A 2013 Appl. Phys. Lett. Mater. 1 011002
[24] Curtarolo S, Setyawan W, Hart G L W, Jahnatek M, Chepulskii R V, Taylor R H, Wang S, Xue J, Yang K, Levy O, Mehl M J, Stokes H T, Demchenko D O and Morgan D 2012 Comput. Mater. Sci. 58 218
[25] Curtarolo S, Setyawan W, Wang S, Xue J, Yang K, Taylor R H, Nelson L J, Hart G L W, Sanvito S, Buongiorno-Nardelli M, Mingo N and Levy O 2012 Comput. Mater. Sci. 58 227
[26] Saal J E, Kirklin S, Aykol M, Meredig B and Wolverton C 2013 J. Minerals Met. & Mater. Soc. 65 1501
[27] Pizzi G, Cepellotti A, Sabatini R, Marzari N and Kozinsky B 2016 Comput. Mater. Sci. 111 218
[28] Ghiringhelli L M, Carbogno C, Levchenko S, Mohamed F, Huhs G, Lüders M, Oliveira M and Scheffler M 2017 Npj Comput. Mater. 3 46
[29] http://nomad-repository.eu/
[30] http://compes-x.nims.go.jp/index_en.html
[31] http://matcloud.cnic.cn/index.html
[32] Mathew K, Singh A K, Gabriel J J, Choudhary K, Sinnott S B, Davydov A V, Tavazza F and Hennig R G 2016 Comput. Mater. Sci. 122 183
[33] Xiao R J, Li H and Chen L Q 2015 J. Materiomics 1 325
[34] http://e01.iphy.ac.cn/www2
[35] Chen H, Hautier G, Jain A, Moore C, Kang B, Doe R, Wu L, Zhu Y, Tang Y and Ceder G 2012 Chem. Mater. 24 2009
[36] Gao J, Chu G, He M, Zhang S, Xiao R J, Li H and Chen L Q 2014 Sci. Chin. Phys. Mech. & Astro. 57 1526
[37] Ling S G, Gao J, Xiao R J and Chen L Q 2016 Chin. Phys. B 25 018208
[38] Hautier G 2016 AIP Conf. Proc. 1765 020009
[39] Angsten T, Mayeshiba T, Wu H and Morgan D 2014 New J. Phys. 16 015018
[40] Wu H, Mayeshiba T and Morgan D 2016 Sci. Data 3 160054
[41] Sendek A D, Yang Q, Cubuk E D, Duerloo K A N, Cui Y and Reed E J 2017 Energy Environ. Sci. 10 306
[42] Xiao R J, Li H and Chen L Q 2015 Sci. Rep. 5 14227
[43] Wang X L, Xiao R J, Li H and Chen L Q 2017 Phys. Rev. Lett. 118 195901
[44] Xiao R J, Li H and Chen L Q 2012 Chem. Mater. 24 4242
[45] McCalla E, Abakumov A M, Saubanére M, Foix D, Berg E J, Rousse G, Doublet M L, Gonbeau D, Novák P, Tendeloo G V, Dominko R and Tarascon J M 2015 Science 350 1516
[46] Kim S, Aykol M, Hegde V I, Lu Z, Kirklin S, Croy J R, Thackeray M M and Wolverton C 2017 Ene. Environ. Sci. 10 2201
[47] Nishijima M, Ootani T, Kamimura Y, Sueki T, Esaki S, Murai S, Fujita K, Tanaka K, Ohira K, Koyama Y and Tanaka I 2014 Nat. Commun. 5 4553
[48] Hajiyani H R, Preiss U, Drautz R and Hammerschmidt T 2013 Modell. Simul. Mater. Sci. Eng. 21 074004
[49] Kirklin S, Meredig B and Wolverton C 2013 Adv. Energy Mater. 3 252
[50] Sun S, Chen Y and Yu J 2015 J. Phys. Chem. C 119 25770
[51] Kirklin S, Chan M K Y, Trahey L, Thackerayc M M and Wolverton C 2014 Phys. Chem. Chem. Phys. 16 22073
[52] Liu M, Rong Z, Malik R, Canepa P, Jain A, Ceder G and Persson K A 2015 Energy Environ. Sci. 8 964
[53] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K and Mitsui A 2011 Nat. Mater. 10 682
[54] Wang X L, Xiao R J, Li H and Chen L Q 2016 Phys. Chem. Chem. Phys. 18 21269
[55] Fujimura K, Seko A, Koyama Y, Kuwabara A, Kishida I, Shitara K, Fisher C A J, Moriwake H and Tanaka I 2013 Adv. Energy Mater. 3 980
[56] Zhu Z, Chu I H and Ong S P 2017 Chem. Mater. 29 2474
[57] Qu X, Jain A, Rajput N N, Cheng L, Zhang Y, Ong S P, Brafman M, Maginn E, Curtiss L and Persson K A 2015 Comput. Mater. Sci. 103 56
[58] Borodin O, Olguin M, Spear C E, Leiter K W and Knap J 2015 Nanotechnology 26 354003
[59] Korth M 2014 Phys. Chem. Chem. Phys. 16 7919
[60] Aykol M, Kim S, Hegde V I, Snydacker D, Lu Z, Hao S, Kirklin S, Morgan D and Wolverton C 2016 Nat. Communi. 7 13779
[61] Xiao R J, Li H and Chen L Q 2018 ElectroChim. Acta 265 244
[62] Wang D D, Zhang X P, Xiao R J, Lu X, Li Y P, Xu T H, Pan D, Hu Y S and Bai Y 2018 ElectroChim. Acta 265 244
[63] Halls M D and Tasaki K 2010 J. Power Sources 195 1472
[64] Han Y K, Lee K, Jung S C and Huh Y S 2014 Comput. Theor. Chem. 1031 64
[65] Park M S, Park I, Kang Y S, Im D and Doob S G 2016 Phys. Chem. Chem. Phys. 18 26807
[66] Jain A, Hautier G, Ong S P, Dacek S and Ceder G 2015 Phys. Chem. Chem. Phys. 17 5942
[1] Efficient sampling for decision making in materials discovery
Yuan Tian(田原), Turab Lookman, and Dezhen Xue(薛德祯). Chin. Phys. B, 2021, 30(5): 050705.
[2] Computational screening of doping schemes for LiTi2(PO4)3 as cathode coating materials
Yu-Qi Wang(王宇琦), Xiao-Rui Sun(孙晓瑞), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉). Chin. Phys. B, 2020, 29(3): 038202.
[3] High-throughput research on superconductivity
Mingyang Qin(秦明阳), Zefeng Lin(林泽丰), Zhongxu Wei(魏忠旭), Beiyi Zhu(朱北沂), Jie Yuan(袁洁), Ichiro Takeuchi, Kui Jin(金魁). Chin. Phys. B, 2018, 27(12): 127402.
[4] The materials data ecosystem: Materials data science and its role in data-driven materials discovery
Hai-Qing Yin(尹海清), Xue Jiang(姜雪), Guo-Quan Liu(刘国权), Sharon Elder, Bin Xu(徐斌), Qing-Jun Zheng(郑清军), Xuan-Hui Qu(曲选辉). Chin. Phys. B, 2018, 27(11): 118101.
[5] Combinatorial synthesis and high-throughput characterization of copper-oxide superconductors
J Wu, A T Bollinger, X He, I Božović. Chin. Phys. B, 2018, 27(11): 118102.
[6] High-throughput theoretical design of lithium battery materials
Shi-Gang Ling(凌仕刚), Jian Gao(高健), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉). Chin. Phys. B, 2016, 25(1): 018208.
[7] Multi-scale computation methods: Their applications in lithium-ion battery research and development
Siqi Shi(施思齐), Jian Gao(高健), Yue Liu(刘悦), Yan Zhao(赵彦), Qu Wu(武曲), Wangwei Ju(琚王伟), Chuying Ouyang(欧阳楚英), Ruijuan Xiao(肖睿娟). Chin. Phys. B, 2016, 25(1): 018212.
[8] A simple theoretical model for evaluating the ability to form a single crystal
Jin Yun-Fei(金云飞), Ming Chen(明辰), Ye Xiang-Xi(叶祥熙), Wang Wei-Min(王为民), and Ning Xi-Jing(宁西京). Chin. Phys. B, 2010, 19(7): 076105.
No Suggested Reading articles found!