Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 108201    DOI: 10.1088/1674-1056/25/10/108201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Particles inside electrolytes with ion-specific interactions, their effective charge distributions and effective interactions

Mingnan Ding(丁茗楠), Yihao Liang(梁逸浩), Xiangjun Xing(邢向军)
Institute of Natural Sciences, and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 China
Abstract  

In this work, we explore the statistical physics of colloidal particles that interact with electrolytes via ion-specific interactions. Firstly we study particles interacting weakly with electrolyte using linear response theory. We find that the mean potential around a particle is linearly determined by the effective charge distribution of the particle, which depends both on the bare charge distribution and on ion-specific interactions. We also discuss the effective interaction between two such particles and show that, in the far field regime, it is bilinear in the effective charge distributions of two particles. We subsequently generalize the above results to the more complicated case where particles interact strongly with the electrolyte. Our results indicate that in order to understand the statistical physics of non-dilute electrolytes, both ion-specific interactions and ionic correlations have to be addressed in a single unified and consistent framework.

Keywords:  electrolytes      effective interaction      linear response theory  
Received:  02 May 2016      Revised:  15 July 2016      Accepted manuscript online: 
PACS:  82.70.Dd (Colloids)  
  83.80.Hj (Suspensions, dispersions, pastes, slurries, colloids)  
  82.45.Gj (Electrolytes)  
  52.25.Kn (Thermodynamics of plasmas)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11174196 and 91130012).

Corresponding Authors:  Xiangjun Xing     E-mail:  xxing@sjtu.edu.cn

Cite this article: 

Mingnan Ding(丁茗楠), Yihao Liang(梁逸浩), Xiangjun Xing(邢向军) Particles inside electrolytes with ion-specific interactions, their effective charge distributions and effective interactions 2016 Chin. Phys. B 25 108201

[1] Kunz W (ed.) 2010 Specific ion effects (Singapore: World Scientific)
[2] Kunz W 2010 Current Opinion in Colloid and Interface Science 15 34
[3] Borukhov I, Andelman D and Orland H 1997 Phys. Rev. Lett. 79 435
[4] Levin Y 2009 Phys. Rev. Lett. 102 147803
[5] Levin Y, Santos A P D and Diehl A 2009 Phys. Rev. Lett. 103 257802
[6] Bostrm M, Williams D R M and Ninham B W 2001 Langmuir 17 4475
[7] Jungwirth P and Tobias D J 2006 Chem. Rev. 106 1259
[8] Kjellander R and Mitchell D J 1992 Chem. Phys. Lett. 200 76
[9] Kjellander R and Mitchell D J 1994 J. Chem. Phys. 101 603
[10] Kjellander R 2001 in Electrostatic Effects in Soft Matter and Biophysics, NATO Science Series, eds. Holm C, Kkicheff P and Podgornik R (Dordrecht: Kluwer Academic Publishers) pp. 317-364
[11] Hansen J P and McDonald I R 2013 Theory of simple liquids: with applications to soft matter (Academic Press)
[12] Ding M N, Liang Y H, Lu S B and Xing X J 2016 submitted to Journal of Statistical Physics
[1] Enhancing the thermoelectric performance through the mutual interaction between conjugated polyelectrolytes and single-walled carbon nanotubes
Shuxun Wan(万树勋), Zhongming Chen(陈忠明), Liping Hao(郝丽苹), Shichao Wang(王世超), Benzhang Li(李本章), Xiao Li(黎潇), Chengjun Pan(潘成军), and Lei Wang(王雷). Chin. Phys. B, 2022, 31(2): 028104.
[2] Broadband strong optical dichroism in topological Dirac semimetals with Fermi velocity anisotropy
J Lim(林镇杰), K J A Ooi(黄健安), C Zhang(涨潮), L K Ang(洪礼祺), Yee Sin Ang(洪逸欣). Chin. Phys. B, 2020, 29(7): 077802.
[3] Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries
Yuqi Li(李钰琦), Yaxiang Lu(陆雅翔), Liquan Chen(陈立泉), Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2020, 29(4): 048201.
[4] A low cost composite quasi-solid electrolyte of LATP, TEGDME, and LiTFSI for rechargeable lithium batteries
Jie Huang(黄杰), Jia-Yue Peng(彭佳悦), Shi-Gang Ling(凌仕刚), Qi Yang(杨琪), Ji-Liang Qiu(邱纪亮), Jia-Ze Lu(卢嘉泽), Jie-Yun Zheng(郑杰允), Hong Li(李泓), Li-Quan Chen(陈立泉). Chin. Phys. B, 2017, 26(6): 068201.
[5] Lattice dynamics properties of chalcopyrite ZnSnP2: Density-functional calculations by using a linear response theory
You Yu(虞游), Yu-Jing Dong(董玉静), Yan-Hong Shen(沈艳红), Guo-Dong Zhao(赵国栋), Xiao-Lin Zheng(郑小林), Jia-Nan Sheng(盛佳南). Chin. Phys. B, 2017, 26(4): 046302.
[6] Anisotropic nanocomposite soft/hard multilayer magnets
Wei Liu(刘伟), Zhidong Zhang(张志东). Chin. Phys. B, 2017, 26(11): 117502.
[7] Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes
Pin Liu(刘品), Qiang Ma(马强), Zheng Fang(方铮), Jie Ma(马洁), Yong-Sheng Hu(胡勇胜), Zhi-Bin Zhou(周志彬), Hong Li(李泓), Xue-Jie Huang(黄学杰), Li-Quan Chen(陈立泉). Chin. Phys. B, 2016, 25(7): 078203.
[8] FT-Raman spectroscopy study of solvent-in-salt electrolytes
Liumin Suo(索鎏敏), Zheng Fang(方铮), Yong-Sheng Hu(胡勇胜), Liquan Chen(陈立泉). Chin. Phys. B, 2016, 25(1): 016101.
[9] All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science
Xiayin Yao(姚霞银), Bingxin Huang(黄冰心), Jingyun Yin(尹景云), Gang Peng(彭刚), Zhen Huang(黄祯), Chao Gao(高超), Deng Liu(刘登), Xiaoxiong Xu(许晓雄). Chin. Phys. B, 2016, 25(1): 018802.
[10] Low-voltage antimony-doped SnO2 nanowire transparent transistors gated by microporous SiO2-based proton conductors
Xuan Rui-Jie (轩瑞杰), Liu Hui-Xuan (刘慧宣 ). Chin. Phys. B, 2012, 21(8): 088104.
[11] Dynamic electron transport theory for multiprobe mesoscopic structures
Quan Jun(全军), Tian Ying (田英), Zhang Jun(张军), and Shao Le-Xi(邵乐喜) . Chin. Phys. B, 2011, 20(7): 077201.
[12] Surface plasmon–polaritons on ultrathin metal films
Quan Jun(全军), Tian Ying(田英), Zhang Jun(张军), and Shao Le-Xi(邵乐喜) . Chin. Phys. B, 2011, 20(4): 047201.
No Suggested Reading articles found!