Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 128201    DOI: 10.1088/1674-1056/27/12/128201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Imaging the diffusion pathway of Al3+ ion in NASICON-type (Al0.2Zr0.8)20/19Nb(PO4)3 as electrolyte for rechargeable solid-state Al batteries

Jie Wang(王捷)1, Chun-Wen Sun(孙春文)1,6,9, Yu-Dong Gong(巩玉栋)1, Huai-Ruo Zhang(张怀若)2,3, Jose Antonio Alonso4, María Teresa Fernández-Díaz5, Zhong-Lin Wang(王中林)1,6,7,9, John B Goodenough8
1 CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences(CAS), Beijing 100083, China;
2 Theiss Research, La Jolla, California 92037, USA;
3 Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA;
4 Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049 Madrid, Spain;
5 Institut Laue Langevin, BP 156 X, GrenobleCedex, France;
6 School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
7 School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA;
8 Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA;
9 Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
Abstract  

Among all-solid-state batteries, rechargeable Al-ion batteries have attracted most attention because they involve three-electron-redox reactions with high theoretic specific capacity. However, the solid Al-ion conductor electrolytes are less studied. Here, the microscopic path of Al3+-ion conduction of NASICON-type (Al0.2Zr0.8)20/19Nb(PO4)3 oxide is identified by temperature-dependent neutron powder diffraction and aberration-corrected scanning transmission electron microscopy experiments. (Al0.2Zr0.8)20/19Nb(PO4)3 shows a rhombohedral structure consisting of a framework of (Zr,Nb)O6 octahedra sharing corners with (PO4) tetrahedra; the Al occupy trigonal antiprisms exhibiting extremely large displacement factors. This suggests a strong displacement of Al ions along the c axis of the unit cell as they diffuse across the structure by a vacancy mechanism. Negative thermal expansion behavior is also identified along a and b axes, due to folding of the framework as temperature increases.

Keywords:  aluminum-ion battery      solid electrolyte      diffusion pathway      negative thermal expansion  
Received:  26 September 2018      Revised:  21 October 2018      Accepted manuscript online: 
PACS:  82.33.Pt (Solid state chemistry)  
  82.45.Gj (Electrolytes)  
  82.45.Xy (Ceramics in electrochemistry)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51672029, 51372271, and 51172275) and the National Key Research and Development Project from the Ministry of Science and Technology, China (Grant No. 2016YFA0202702).

Corresponding Authors:  Chun-Wen Sun, Huai-Ruo Zhang, Jose Antonio Alonso     E-mail:  sunchunwen@binn.cas.cn;huairuo.zhang@nist.gov;ja.alonso@icmm.csic.es

Cite this article: 

Jie Wang(王捷), Chun-Wen Sun(孙春文), Yu-Dong Gong(巩玉栋), Huai-Ruo Zhang(张怀若), Jose Antonio Alonso, María Teresa Fernández-Díaz, Zhong-Lin Wang(王中林), John B Goodenough Imaging the diffusion pathway of Al3+ ion in NASICON-type (Al0.2Zr0.8)20/19Nb(PO4)3 as electrolyte for rechargeable solid-state Al batteries 2018 Chin. Phys. B 27 128201

[1] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K and Mitsui A 2011 Nat. Mater. 10 682
[2] Quartarone E and Mustarelli P 2011 Chem. Soc. Rev. 40 2525
[3] Sun C W, Liu J, Gong Y, Wilkinson D P and Zhang J J 2017 Nano Energy 33 363
[4] Bates J B, Dudney N J, Neudecker B, Ueda A and Evans C D 2000 Solid State Ionics 135 33
[5] Hou H D, Xu Q K, Pang Y K, Li L, Wang J L, Zhang C and Sun C W 2017 Adv. Sci. 4 1700072
[6] Shi M L, Liu L, Tian F H, Wang P F, Li J J and Ma L 2017 Acta Phys. Sin. 66 208201 (in Chinese)
[7] Ling S G, Peng J Y, Yang Q, Qiu J L, Lu J Z and Li H 2018 Chin. Phys. B 27 038201
[8] Elia G A, Marquardt K, Hoeppner K, Fantini S, Lin R Y, Knipping E, Peters W, Drillet J F, Passerini S and Hahn R 2016 Adv. Mater. 28 7564
[9] Ambroz F, Macdonald T J and Nann T 2017 Adv. Energy Mater. 7 1602093
[10] Lin M C, Gong M, Lu B, Wu Y, Wang D Y, Guan M, Angell M, Chen C, Yang J, Hwang B J and Dai H 2015 Nature 520 324
[11] Imanaka N, Hasegawa Y, Yamaguchi M, Itaya M, Tamura S and Adachi G 2002 Chem. Mater. 14 4481
[12] Robertson A D, West A R and Ritchie A G 1997 Solid State Ionics 104 1
[13] Heriksen G L and Vissers D R 1994 J. Power Sources 51 115
[14] Zhang Y, Lai J Y, Gong Y D, Hu Y M, Liu J, Sun C W and Wang Z L 2016 ACS Appl. Mater. Interfaces 8 34309
[15] Rodríguez-Carvajal J 1993 Physica B 192 55
[16] Chiku M, Takeda H, Matsumura S, Higuchi E and Inoue H 2015 ACS Appl. Mater. Interfaces 7 24385
[17] Song Y, Jiao S, Tu J, Liu Y, Jiao H, Mao X, Guo Z and Fray D J 2017 J. Mater. Chem. A 5 1282
[18] Wang H, Bai Y, Chen S, Luo X, Wu C, Wu F, Lu J and Amine K 2015 ACS Appl. Mater. Interfaces 7 80
[19] Hagman L O and Kierkegaard P 1968 Acta Chem-. Scand. 22 1822
[20] Bennouna L, Arsalane S, Brochu R, Lee M R, Chassaing J and Quarton M 1995 J. Solid State Chem. 114 224
[21] Shannon R D 1976 Acta Crystallogr. Sect. A 32 751
[22] Evans J S O 1999 J. Chem. Soc. Dalton Trans. 19 3317
[23] Taylor D 1991 Br. Ceram. Trans. 90 64
[24] Mary T A, Evans J S O, Vogt T and Sleight A W 1996 Science 272 90
[25] Chen J, Deng J X, Yu R B, Sun C, Hu P H and Xing X R 2010 Physics 39 691 (in Chinese)
[26] Lind C, Wilkinson A P, Hu Z, Short S and Jorgensen J D 1998 Chem. Mater. 10 2335
[27] Wignacourt J P, Swinnea J S, Steinfink H and Goodenough J B 1988 Appl. Phys. Lett. 53 1753
[28] Liang Y, Cheng Y G, Ge X H, Yuan B H, Guo J, Sun Q and Liang E J 2017 Chin. Phys. B 26 106501
[29] Goodwin A L, Calleja M, Conterio M J, Dove M T, Evans J S O, Keen D A, Peters L and Tucker M G 2008 Science 319 794
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[3] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[4] Copper ion beam emission in solid electrolyte Rb4Cu16I6.5Cl13.5
Tushagu Abudouwufu(吐沙姑·阿不都吾甫), Xiangyu Zhang (张翔宇), Wenbin Zuo (左文彬), Jinbao Luo(罗进宝), Yueqiang Lan(兰越强), Canxin Tian (田灿鑫), Changwei Zou(邹长伟), Alexander Tolstoguzov, and Dejun Fu(付德君). Chin. Phys. B, 2022, 31(4): 040704.
[5] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[6] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[7] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[8] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[9] Negative thermal expansion in NbF3 and NbOF2: A comparative theoretical study
Mingyue Zhang(张明月), Chunyan Wang(王春艳), Yinuo Zhang(张一诺), Qilong Gao(高其龙), and Yu Jia(贾瑜). Chin. Phys. B, 2021, 30(5): 056501.
[10] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[11] Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator
Zhao Yan(闫昭), Hongyi Pan(潘弘毅), Junyang Wang(汪君洋), Rusong Chen(陈汝颂), Fei Luo(罗飞), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2020, 29(8): 088201.
[12] Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study
Jieyun Zheng(郑杰允), Jialiang Liu(刘家亮), Suijun Wang(王绥军), Fei Luo(罗飞), Liubin Ben(贲留斌), Hong Li(李泓). Chin. Phys. B, 2020, 29(4): 048203.
[13] Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries
Yuqi Li(李钰琦), Yaxiang Lu(陆雅翔), Liquan Chen(陈立泉), Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2020, 29(4): 048201.
[14] Artificial solid electrolyte interphase based on polyacrylonitrile for homogenous and dendrite-free deposition of lithium metal
Hang-Yu Xu(徐航宇), Quan Li(李泉), Hong-Yi Pan(潘弘毅), Ji-Liang Qiu(邱纪亮), Wen-Zhuo Cao(曹文卓), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(7): 078202.
[15] Improved electrochemical performance of Li(Ni0.6Co0.2Mn0.2)O2 at high charging cut-off voltage with Li1.4Al0.4Ti1.6(PO4)3 surface coating
Yi Wang(王怡), Bo-Nan Liu(刘柏男), Ge Zhou(周格), Kai-Hui Nie(聂凯会), Jie-Nan Zhang(张杰男), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(6): 068202.
No Suggested Reading articles found!