Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 105201    DOI: 10.1088/1674-1056/24/10/105201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Investigation of high sensitivity radio-frequency readout circuit based on AlGaN/GaN high electron mobility transistor

Zhang Xiao-Yu (张晓渝)a, Tan Ren-Bing (谭仁兵)b, Sun Jian-Dong (孙建东)a, Li Xin-Xing (李欣幸)a, Zhou Yu (周宇)a, Lü Li (吕利)a, Qin Hua (秦华)a
a Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125, China;
b School of Mathematics and Physics, Chongqing University of Science and Technology, Chongqing 401331, China
Abstract  An AlGaN/GaN high electron mobility transistor (HEMT) device is prepared by using a semiconductor nanofabrication process. A reflective radio-frequency (RF) readout circuit is designed and the HEMT device is assembled in an RF circuit through a coplanar waveguide transmission line. A gate capacitor of the HEMT and a surface-mounted inductor on the transmission line are formed to generate LC resonance. By tuning the gate voltage Vg, the variations of gate capacitance and conductance of the HEMT are reflected sensitively from the resonance frequency and the magnitude of the RF reflection signal. The aim of the designed RF readout setup is to develop a highly sensitive HEMT-based detector.
Keywords:  radio-frequency circuit      high electron mobility transistor  
Received:  10 March 2015      Revised:  17 May 2015      Accepted manuscript online: 
PACS:  52.70.Gw (Radio-frequency and microwave measurements)  
  85.30.-z (Semiconductor devices)  
  73.61.Ey (III-V semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61107093), the Suzhou Science and Technology Project, China (Grant No. ZXG2012024), and the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2012243).
Corresponding Authors:  Zhang Xiao-Yu, Qin Hua     E-mail:  xyzhang2010@sinano.ac.cn;hqin2007@sinano.ac.cn

Cite this article: 

Zhang Xiao-Yu (张晓渝), Tan Ren-Bing (谭仁兵), Sun Jian-Dong (孙建东), Li Xin-Xing (李欣幸), Zhou Yu (周宇), Lü Li (吕利), Qin Hua (秦华) Investigation of high sensitivity radio-frequency readout circuit based on AlGaN/GaN high electron mobility transistor 2015 Chin. Phys. B 24 105201

[1] Mishra U K, Parikh P and Wu Y F 2002 Proc. IEEE 90 1022
[2] Chen Q, Yang J W, Gaska R and Asif Khan M 1998 IEEE Electron Dev. Lett. 19 44
[3] Mishra U K, Wu Y F, Keller B P, Keller S and Denbaars S P 1998 IEEE Trans. Microwave Theor. Technol. 46 756
[4] Wu Y F, Kapolnek D, Ibbetson J P, Parikh P, Keller B P and Mishra U K 2001 IEEE Trans. Electron Dev. 48 586
[5] Sheppard S T, Doverspike K, Pribble W L, Allen S T and Palmour J W 1999 IEEE Electron Dev. Lett. 20 161
[6] Lei Z F, Guo H X, Zeng C, Chen H, Wang Y S and Zhang Z G 2015 Chin. Phys. B 24 056103
[7] Zhang P, Zhao S L, Hou B, Wang C, Zheng X F, Ma X H, Zhang J C and Hao Y 2015 Chin. Phys. B 24 037304
[8] Sun Y F, Sun J D, Zhang X Y, Qin H, Zhang B S and Wu D M 2012 Chin. Phys. B 21 108504
[9] Schoelkopf R J, Wahlgren P, Kozhevnikov A A, Delsing P and Prober D E 1998 Science 280 1238
[10] Qin H and Williams D A 2006 Appl. Phys. Lett. 88 203506
[11] Chen Y, Daigle A, Fitchorov T, Hu B, Geiler M, Geiler A, Vittoria C and Harris V G 2011 Appl. Phys. Lett. 98 202502
[12] Sun J D, Qin H, Lewis R A, Sun Y F, Zhang X Y, Cai Y, Wu D M and Zhang B S 2012 Appl. Phys. Lett. 100 173513
[13] Maeda N, Nishida T, Kobayashi N and Tomizawa M 1998 Appl. Phys. Lett. 73 1856
[14] Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, et al. 2000 J. Appl. Phys. 87 334
[1] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[2] Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
Jia-Le Tang(唐家乐) and Chao Liu(刘超). Chin. Phys. B, 2022, 31(1): 018101.
[3] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[4] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[5] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[6] High performance InAlN/GaN high electron mobility transistors for low voltage applications
Minhan Mi(宓珉瀚), Meng Zhang(张濛), Sheng Wu(武盛), Ling Yang(杨凌), Bin Hou(侯斌), Yuwei Zhou(周雨威), Lixin Guo(郭立新), Xiaohua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(5): 057307.
[7] Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate
Minglong Zhao(赵明龙), Xiansheng Tang(唐先胜), Wenxue Huo(霍雯雪), Lili Han(韩丽丽), Zhen Deng(邓震), Yang Jiang(江洋), Wenxin Wang(王文新), Hong Chen(陈弘), Chunhua Du(杜春花), Haiqiang Jia(贾海强). Chin. Phys. B, 2020, 29(4): 048104.
[8] Effect of defects properties on InP-based high electron mobility transistors
Shu-Xiang Sun(孙树祥), Ming-Ming Chang(常明铭), Meng-Ke Li(李梦珂), Liu-Hong Ma(马刘红), Ying-Hui Zhong(钟英辉), Yu-Xiao Li(李玉晓), Peng Ding(丁芃), Zhi Jin(金智), Zhi-Chao Wei(魏志超). Chin. Phys. B, 2019, 28(7): 078501.
[9] The origin of distorted intensity pattern sensed by a lens and antenna coupled AlGaN/GaN-HEMT terahertz detector
Xiang Li(李想), Jian-Dong Sun(孙建东), Hong-Juan Huang(黄宏娟), Zhi-Peng Zhang(张志鹏), Lin Jin(靳琳), Yun-Fei Sun(孙云飞), V V Popov, Hua Qin(秦华). Chin. Phys. B, 2019, 28(11): 118502.
[10] High-performance InAlGaN/GaN enhancement-mode MOS-HEMTs grown by pulsed metal organic chemical vapor deposition
Ya-Chao Zhang(张雅超), Zhi-Zhe Wang(王之哲), Rui Guo(郭蕊), Ge Liu(刘鸽), Wei-Min Bao(包为民), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(1): 018102.
[11] Integration of a field-effect-transistor terahertz detector with a diagonal horn antenna
Xiang Li(李想), Jian-dong Sun(孙建东), Zhi-peng Zhang(张志鹏), V V Popov, Hua Qin(秦华). Chin. Phys. B, 2018, 27(6): 068506.
[12] Two-dimensional electron gas characteristics of InP-based high electron mobility transistor terahertz detector
Jin-Lun Li(李金伦), Shao-Hui Cui(崔少辉), Jian-Xing Xu(徐建星), Xiao-Ran Cui(崔晓然), Chun-Yan Guo(郭春妍), Ben Ma(马奔), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(4): 047101.
[13] A novel enhancement mode AlGaN/GaN high electron mobility transistor with split floating gates
Hui Wang(王辉), Ning Wang(王宁), Ling-Li Jiang(蒋苓利), Xin-Peng Lin(林新鹏), Hai-Yue Zhao(赵海月), Hong-Yu Yu(于洪宇). Chin. Phys. B, 2017, 26(4): 047305.
[14] Growth condition optimization and mobility enhancement through inserting AlAs monolayer in the InP-based InxGa1-xAs/In0.52Al0.48As HEMT structures
Shu-Xing Zhou(周书星), Ming Qi(齐鸣), Li-Kun Ai(艾立鹍), An-Huai Xu(徐安怀). Chin. Phys. B, 2016, 25(9): 096801.
[15] Recessed-gate quasi-enhancement-mode AlGaN/GaN high electron mobility transistors with oxygen plasma treatment
Yun-Long He(何云龙), Chong Wang(王冲), Min-Han Mi(宓珉瀚), Xue-Feng Zheng(郑雪峰), Meng Zhang(张濛), Meng-Di Zhao(赵梦荻), Heng-Shuang Zhang(张恒爽), Li-Xiang Chen(陈立香), Jin-Cheng Zhang(张进成), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(11): 117305.
No Suggested Reading articles found!