Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 100204    DOI: 10.1088/1674-1056/24/10/100204
GENERAL Prev   Next  

Transformation optics for efficient calculation of transmembrane voltage induced on cells

Liao Yin-Hong (廖胤鸿)a, Zhu Hua-Cheng (朱铧丞)a, Tang Zheng-Ming (唐正明)a b, Huang Ka-Ma (黄卡玛)a
a School of Electronic Information and Engineering, Sichuan University, Chengdu 610029, China;
b School of Electronics Information and Engineering, China West Normal University, Nanchong 637009, China
Abstract  

We present a novel efficient approach in calculating induced transmembrane voltage (ITV) on cells based on transformation optics. As cell membrane is much thinner than the dimension of a typical cell, discretizing the membrane needs numerous meshes. Using an anisotropic medium based on transformation optics, the thickness of the membrane can be exaggerated by at least one order, which eliminates rigorous mesh refinement and reduces unknowns greatly. The accuracy and efficiency of the proposed method are verified by a cylindrical cell model. Moreover, the influence on ITV with bound water (BW) layers is also studied. The results show that when cells are exposed to nanosecond electric field, BW layers should be rigorously considered in calculating ITV.

Keywords:  efficient calculation      transmembrane voltage      transformation optics      anisotropic medium      membrane      bound water layer  
Received:  12 February 2015      Revised:  27 May 2015      Accepted manuscript online: 
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  41.20.Cv (Electrostatics; Poisson and Laplace equations, boundary-value problems)  
  87.10.Ca (Analytical theories)  
  87.16.D- (Membranes, bilayers, and vesicles)  
Fund: 

Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB328900 and 2013CB328905).

Corresponding Authors:  Huang Ka-Ma     E-mail:  kmhuang@scu.edu.cn

Cite this article: 

Liao Yin-Hong (廖胤鸿), Zhu Hua-Cheng (朱铧丞), Tang Zheng-Ming (唐正明), Huang Ka-Ma (黄卡玛) Transformation optics for efficient calculation of transmembrane voltage induced on cells 2015 Chin. Phys. B 24 100204

[1] Tsong T Y 1983 Biosci. Rep. 3 487
[2] Julie G and Mir L M 1999 Biochem. Biophys. Res. Commun. 261 377
[3] Valero A, Post J N, van Nieuwkasteele V W, ter BraakP M, Kruijer W and van den Berg A 2008 Lab Chip 8 62
[4] Zimmermann U 1982 Biochim. Biophys. Acta 694 227
[5] Orlowski S, Behradek J J, Paoletti C and Mir L M 1988 Biochem. Pharmacol. 37 4724
[6] Titomirov A V, Sukharev S I and Kristanova E 1991 Biochim. Biophys. Acta 1088 131
[7] Schoenbach K H, Joshi R P, Kolb J F, Chen N, Stacey M, Blackmore M and Beebe P F 2004 Proc. IEEE 92 1122
[8] Pakhomov A G, Kolb J F, White J A, Joshi, Xiao R P and Schoenbach S 2007 Bioelectromagnetics 28 655
[9] Croce R P, Vita A, De Pierro V and Pinto I M 2010 IEEE Trans. Plasma Sci. 38 149
[10] Stewart D A, Gowrishankar T R, Smith K C and Weaver J C 2005 IEEE Trans. Biomed. Eng. 52 1643
[11] Susil R, Semrov D and Miklavcic D 1998 Electro. Magnetobiol. 17 391
[12] Penland R C, Harrild D M and Henriquez C S 2002 Comput. Visual. Sci. 4 215
[13] Peskin C S 1977 J. Comput. Phys. 25 220
[14] Clair P 2009 Math. Method Appl. Sci. 32 435
[15] Pucihar G, Kotnik T, ValičT and MiklavčičD 2006 Ann. Biomed. Eng. 34 642
[16] Clair P, Dular C, Perrussel P, Krahenbuhl R, Nicolas L and Schatzman L 2008 IEEE Trans. Mag. 44 1154
[17] Huang X, Nguyen D, Greve D W and Domach M M 2004 IEEE Sensors J. 4576
[18] Salim E 2011 "Nanosecond Pulse Electroporation of Biological Cells: The Effect of Membrane Dielectric Relaxation", MS Dissertation (Winnipeg: University of Manitoba)
[19] Caterina M, Paffi A, Apollonio F, Leveque P, d'Inzeo G and Liberti M 2011 IEEE Trans. Biomed. Eng. 58 1294
[20] Margarita S and Gimsa J 2006 Bioelectromagnetics 27 652
[21] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[22] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[23] Jiang W X, Luo C Y, Ma H F, Mei Z L and Cui T J 2012 Sci. Rep. 2 956
[24] Yu Z Z, Feng Y J, Wang Z B, Zhao J M and Jiang T 2013 Chin. Phys. B 22 034102
[25] Wang X H, Qu S B, Xia S, Wang B K, Xu Z, Ma H, Wang J F, Gu C, Wu X, Lu L and Zhou H 2010 Chin. Phys. B 19 064101
[26] Han T, Yuan T, Li B and Qiu C W 2013 Sci. Rep. 3 1593
[27] Guenneau S, Amra C and Veynante D 2012 Opt. Express 20 8207
[28] Chen H and Chan C T 2007 Appl. Phys. Lett. 91 183518
[29] Ward A J and Pendry J B 1996 J. Mod. Opt. 43 773
[30] Milton G W, Briane M and Willis J R 2006 New J. Phys. 8 248
[31] Tieleman D P, Marrink S J and Berendsen H J C 1997 Acta Biochem. Biophys. Sin. 1331 235
[1] Regulation of the intermittent release of giant unilamellar vesicles under osmotic pressure
Qi Zhou(周琪), Ping Wang(王平), Bei-Bei Ma(马贝贝), Zhong-Ying Jiang(蒋中英), and Tao Zhu(朱涛). Chin. Phys. B, 2022, 31(9): 098701.
[2] Design method of reusable reciprocal invisibility and phantom device
Cheng-Fu Yang(杨成福), Li-Jun Yun(云利军), and Jun-Wei Li(李俊玮). Chin. Phys. B, 2022, 31(8): 084101.
[3] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[4] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[5] Reflectionless spatial beam benders with arbitrary bending angle by introducing optic-null medium into transformation optics
Fei Sun(孙非), Yi-Chao Liu(刘一超), Yi-Biao Yang(杨毅彪), Hong-Ming Fei(费宏明), Zhi-Hui Chen(陈智辉), and Sai-Ling He(何赛灵). Chin. Phys. B, 2021, 30(3): 034101.
[6] Estimation of biophysical properties of cell exposed to electric field
Hui Zhang(张辉), Liyang Wang(王李阳), Peijie Zhang(张培杰), Xiaodi Zhang(张小娣), and Jun Ma(马军). Chin. Phys. B, 2021, 30(3): 038702.
[7] Hexagonal arrangement of phospholipids in bilayer membranes
Xiao-Wei Chen(陈晓伟), Ming-Xia Yuan(元明霞), Han Guo(郭晗), Zhi Zhu(朱智). Chin. Phys. B, 2020, 29(3): 030505.
[8] High efficiency hydrogen purification through P2C3 membrane: A theoretical study
Zhao-Qin Chu(储兆琴), Xiao Gu(顾晓), Xiang-Mei Duan(段香梅). Chin. Phys. B, 2019, 28(12): 128703.
[9] Controllable optical bistability in a three-mode optomechanical system with a membrane resonator
Jiakai Yan(闫甲楷), Xiaofei Zhu(朱小霏), Bin Chen(陈彬). Chin. Phys. B, 2018, 27(7): 074214.
[10] Superconducting membrane mechanical oscillator based on vacuum-gap capacitor
Yong-Chao Li(李永超), Xin Dai(戴欣), Jun-Liang Jiang(江俊良), Jia-Zheng Pan(潘佳政), Xing-Yu Wei(魏兴雨), Ya-Peng Lu(卢亚鹏), Sheng Lu(卢盛), Xue-Cou Tu(涂学凑), Guo-Zhu Sun(孙国柱), Pei-Heng Wu(吴培亨). Chin. Phys. B, 2018, 27(6): 060701.
[11] Molecular dynamics simulations of membrane deformation induced by amphiphilic helices of Epsin, Sar1p, and Arf1
Zhen-Lu Li(李振鲁). Chin. Phys. B, 2018, 27(3): 038703.
[12] First integrals of the axisymmetric shape equation of lipid membranes
Yi-Heng Zhang(张一恒), Zachary McDargh, Zhan-Chun Tu(涂展春). Chin. Phys. B, 2018, 27(3): 038704.
[13] Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes
Meng Du(杜萌), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Zhong-Po Zhou(周忠坡), Shuo-Xue Jin(靳硕学), Bao-Yi Wang(王宝义). Chin. Phys. B, 2018, 27(2): 027805.
[14] Homogeneous transparent device and its layered realization
Cheng-Fu Yang(杨成福), Ming Huang(黄铭), Jing-Jing Yang(杨晶晶), Fu-Chun Mao(毛福春), Ting-Hua Li(李廷华), Peng Li(黎鹏), Peng-Shan Ren(任鹏姗). Chin. Phys. B, 2018, 27(12): 124101.
[15] Tunable monoenergy positron annihilation spectroscopy of polyethylene glycol thin films
Peng Kuang(况鹏), Xiao-Long Han(韩小龙), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Peng Zhang(张鹏), Bao-Yi Wang(王宝义). Chin. Phys. B, 2017, 26(5): 057802.
No Suggested Reading articles found!