ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Homogeneous transparent device and its layered realization |
Cheng-Fu Yang(杨成福)1, Ming Huang(黄铭)1, Jing-Jing Yang(杨晶晶)1, Fu-Chun Mao(毛福春)1, Ting-Hua Li(李廷华)2, Peng Li(黎鹏)1, Peng-Shan Ren(任鹏姗)1 |
1 School of Information Science and Engineering, Wireless Innovation Laboratory of Yunnan University, Kunming 650091, China;
2 Technology Center of China Tobacco Yunnan Industrial Corporation, Kunming 650231, China |
|
|
Abstract Arbitrarily shaped electromagnetic transparent devices with homogeneous, non-negative, anisotropic and generic constitutive parameters are proposed based on linear transformation optics, which provides the flexibility for device design that is applicable for the practical fabrication. To remove the anisotropic property, a layered structure is developed based on effective medium theory. Simulation results show that with sufficient layers, the performance of the layered transparent device is nearly as perfect as an ideal device, and it is able to protect an antenna without sacrificing its performance. The feasibility of designing a transparent device by using natural isotropic materials instead of metamaterials would dramatically reduce the difficulty of fabrication and further promote the practicality of the device.
|
Received: 18 June 2018
Revised: 14 August 2018
Accepted manuscript online:
|
PACS:
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61461052 and 11564044) and the Key Program of the Natural Science Foundation of Yunnan Province, China (Grant Nos. 2013FA006 and 2015FA015). |
Corresponding Authors:
Ming Huang, Jing-Jing Yang
E-mail: huangming@ynu.edu.cn;yangjingjing@ynu.edu.cn
|
Cite this article:
Cheng-Fu Yang(杨成福), Ming Huang(黄铭), Jing-Jing Yang(杨晶晶), Fu-Chun Mao(毛福春), Ting-Hua Li(李廷华), Peng Li(黎鹏), Peng-Shan Ren(任鹏姗) Homogeneous transparent device and its layered realization 2018 Chin. Phys. B 27 124101
|
[1] |
Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
|
[2] |
Leonhardt U 2006 Science 312 1777
|
[3] |
Chen H Y, Chan C T and Sheng P 2010 Nat. Mater. 9 387
|
[4] |
Liu R, Ji C, Mock J J, Chin J Y, Cui T J and Smith D R 2009 Science 323 366
|
[5] |
Lai Y, Chen H, Zhang Z Q and Chan C T 2009 Phys. Rev. Lett. 102 093901
|
[6] |
Valentine J, Li J, Zentgraf T, Bartal G and Zhang X 2009 Nat. Mater. 8 568
|
[7] |
Han T, Tang X and Xiao F 2009 J. Phys. D: Appl. Phys. 42 235403
|
[8] |
Yang J J, Huang M, Yang C F and Yu J 2011 Eur. Phys. J. D 61 731
|
[9] |
Wong Z J, Wang Y, O'Brien K, Rho J, Yin X, Zhang S and Zhang X 2017 J. Opt. 19 084007
|
[10] |
Zheng B, Madni H A, Hao R, Zhang X, Liu X, Li E and Chen H 2016 Light-Sci. Appl. 5 e16177
|
[11] |
Rajput A and Srivastava K V 2017 Plasmonics 12 771
|
[12] |
Madni H A, Hussain K, Jiang W X, Liu S, Aziz A, Iqbal S and Cui T J arXiv: 1805.05403
|
[13] |
Luo X Y, Liu D Y, Liu J J and Dong J F 2014 Chin. Phys. B 23 054101
|
[14] |
Liu G C, Li C, Shao J J, F and G Y 2014 Chin. Phys. Lett. 31 044101
|
[15] |
Zang X F, Zhu Y M, Ji X B, Chen L, Hu Q and Zhuang S L 2017 Sci. Rep. 7 40941
|
[16] |
Jiang W X, Cui T J, Yang X M, Ma H F and Cheng Q 2011 Appl. Phys. Lett. 98 204101
|
[17] |
Li T H, Huang M, Yang J, Xu X and Chen M 2015 Mod. Phys. Lett. B 29 1550045
|
[18] |
Zhang K, Ding X, Wo D, Meng F and Wu Q 2016 Appl. Phys. Lett. 108 053508
|
[19] |
Jiang W X, Bao D and Cui T J 2016 J. Opt. 18 044022
|
[20] |
Wang H, Deng Y, Zheng B, Li R, Jiang Y, Dehdashti S and Chen H 2017 Sci. Rep. 7 40083
|
[21] |
Yang R, Kong X, Wang H, Su H, Lei Z, Wang J and Chen L 2016 Sci. Rep. 6 20530
|
[22] |
Eskandari H, Majedi M S and Attari A R 2017 JOSA B 34 1191
|
[23] |
Wu Y L, Zhuang Z, Deng L and Liu Y A 2016 Sci. Rep. 6 24495
|
[24] |
Mei J S, Wu Q, Zhang K, He X J and Wang Y 2016 Opt. Commun. 368 113
|
[25] |
Yu Z Z, Feng Y J, Wang Z B, Zhao J M and Jiang T C 2013 Chin. Phys. B 22 034102
|
[26] |
Chen X, Cai L and Wen J H 2018 Chin. Phys. B 27 057803
|
[27] |
Zhang K L, Hou Z L, Bi S and Fang H M 2017 Chin. Phys. B 26 0127802
|
[28] |
Xia G, Kou W, Yang L and Du Y C 2017 Chin. Phys. B 26 0104403
|
[29] |
Wang Y Y, Ding E L, Liu X Z and Gong X F 2016 Chin. Phys. B 25 0124305
|
[30] |
Yu G X, Cui T J and Jiang W 2009 J. Infrared. Millim. T. E 30 633
|
[31] |
Yang C F, Yang J J, Huang M, Shi J H and Peng J H 2010 RadioEng. 19 136
|
[32] |
Mei Z L, Niu T M, Bai J and Cui T J 2010 J. Appl. Phys. 107 124908
|
[33] |
Yang J J, Li T H, Huang M and Cheng M 2011 Appl. Phys. A 104 733
|
[34] |
Li T, Huang M, Yang J, Yu J and Lan Y 2011 J. Phys. D: Appl. Phys. 44 325102
|
[35] |
Li T, Huang M, Yang J J, Xie, R S and Yu J 2012 Int. J. Rf. Microw. C E 22 522
|
[36] |
Li T H, Huang M, Yang J J, Yang G and Cai G H 2014 Chin. Phys. B 23 054102
|
[37] |
Han T and Wu Z 2014 Opt. Lett. 39 3698
|
[38] |
Wood B, Pendry, J B and Tsai D P 2006 Phys. Rev. B 74 115116
|
[39] |
Li T, Huang M, Yang J, Zhu W and Zeng J 2013 IEEE T. Magn. 49 5280
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|