Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 100301    DOI: 10.1088/1674-1056/24/10/100301
GENERAL Prev   Next  

Time-domain nature of group delay

Wang Jian-Wu (王建武)a b, Feng Zheng-He (冯正和)a
a Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
b Air-force Air-born Academy, Guilin 541003, China
Abstract  The characteristic of group delay is analyzed based on an electronic circuit, and its time-domain nature is studied with time-domain simulation and experiment. The time-domain simulations and experimental results show that group delay is the delay of the energy center of the amplitude-modulated pulse, rather than the propagation delay of the electromagnetic field. As group velocity originates from the definition of group delay and group delay is different from the propagation delay, the superluminality or negativity of group velocity does not mean the superluminal or negative propagation of the electromagnetic field.
Keywords:  energy center      group delay      time domain      superluminality  
Received:  04 January 2015      Revised:  13 April 2015      Accepted manuscript online: 
PACS:  03.30.+p (Special relativity)  
  04.30.Nk (Wave propagation and interactions)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB329002) and the National Natural Science Foundation of China (Grant No. 61371012).
Corresponding Authors:  Wang Jian-Wu     E-mail:  wangjianwuradar@163.com

Cite this article: 

Wang Jian-Wu (王建武), Feng Zheng-He (冯正和) Time-domain nature of group delay 2015 Chin. Phys. B 24 100301

[1] Zhu X W, Li Y L, Yong S W and Zhuang Z W 2009 IEEE Trans. Instrum. Measur. 58 229
[2] Wang L J, Kuzmich A and Dogariu A 2000 Nature 406 277
[3] Stenner M D, Gauthier D J and Neifeld M A 2003 Nature 425 695
[4] Büttiker M and Washburn S 2003 Nature 422 271
[5] Huang Z X 2007 Journal of Communication University of China Science and Technology 14 1 (in Chinese)
[6] Huang Z X 2013 Journal of Communication University of China Science and Technology 20 4 (in Chinese)
[7] Huang Z X and Jiang R 2014 Frontier Science 8 63 (in Chinese)
[8] Withayachumnankul W, Fischer B M, Ferguson B, Davis B R and Abbott D 2010 Proc. IEEE 98 1775
[9] Kitano M, Nakanishi T and Sugiyama K 2003 IEEE J. Sel. Top. Quantum Electron. 9 43
[10] Peverini O A, Tascone R, Addamo G, Virone G and Orta R 2008 IEEE Anten. Wireless Propag. Lett. 7 101
[11] Wu C T M, Gharavi S, Daneshrad B and Itoh T 2013 IEEE Microwave and Wireless Components Letters 23 593
[12] Thévenaz L 2008 Nat. Photon. 2 474
[13] Zhan L, Zhang L, Liu J M, Shen Q S and Xia Y X 2010 Proceedings of the 9th International Conference on Optical Communications and Networks, October 24-27, 2010, Nanjing, China, p. 245
[14] Safavi N A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O 2011 Nature 472 69
[15] Solli D R, McCormick C F, Chiao R Y and Hickmann J M 2003 IEEE J. Sel. Top. Quantum Electron. 9 40
[16] Kim K Y 2012 IEEE Photon. J. 4 369
[17] Asadpour S H and Soleimani H R 2015 Chin. Phys. B 24 014204
[18] Hrabar S, Krois I, Bonic I and Kiricenko A 2013 Appl. Phys. Lett. 102 054108
[19] Ouyang Q Y, Zhang Y D, Tian H, Liu D J, Yuan P and Song Y L 2010 J. Appl. Phys. 108 093110
[20] Wu D Z 2005 Analysis of Signals and Linear Systems, 4th edn. (Beijing: Higher Education Press) p. 342 (in Chinese)
[1] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[2] Reducing the calculation workload of the Green function for electromagnetic scattering in a Schwarzschild gravitational field
Shou-Qing Jia(贾守卿). Chin. Phys. B, 2019, 28(7): 070401.
[3] Competitive and synergistic adsorption of binary volatile organic compound mixtures on activated carbon
Jing Zhu(祝静), Hong-Lei Zhan(詹洪磊), Kun Zhao(赵昆), Xin-Yang Miao(苗昕扬), Qiong Zhou(周琼), Wen-Zheng Yue(岳文正). Chin. Phys. B, 2019, 28(2): 020204.
[4] Light-scattering model for aerosol particles with irregular shapes and inhomogeneous compositions using a parallelized pseudo-spectral time-domain technique
Shuai Hu(胡帅), Taichang Gao(高太长), Hao Li(李浩), Lei Liu(刘磊), Ming Chen(陈鸣), Bo Yang(杨波). Chin. Phys. B, 2018, 27(5): 054215.
[5] Different optical properties in different periodic slot cavity geometrical morphologies
Jing Zhou(周静), Meng Shen(沈萌), Lan Du(杜澜), Caisong Deng(邓彩松), Haibin Ni(倪海彬), Ming Wang(王鸣). Chin. Phys. B, 2016, 25(9): 097301.
[6] Spectroscopic measurements and terahertz imaging of the cornea using a rapid scanning terahertz time domain spectrometer
Wen-Quan Liu(刘文权), Yuan-Fu Lu(鲁远甫), Guo-Hua Jiao(焦国华), Xian-Feng Chen(陈险峰), Zhi-Sheng Zhou(周志盛), Rong-Bin She(佘荣斌), Jin-Ying Li(李金瑛), Si-Hai Chen(陈四海), Yu-Ming Dong (董玉明), Jian-Cheng Lü(吕建成). Chin. Phys. B, 2016, 25(6): 060702.
[7] Absorption enhancement and sensing properties of Ag diamond nanoantenna arrays
Yuan Yu-Yang (袁宇阳), Yuan Zong-Heng (袁纵横), Li Xiao-Nan (李骁男), Wu Jun (吴军), Zhang Wen-Tao (张文涛), Ye Song (叶松). Chin. Phys. B, 2015, 24(7): 074206.
[8] Digital coherent detection research on Brillouin optical time domain reflectometry with simplex pulse codes
Hao Yun-Qi (郝蕴琦), Ye Qing (叶青), Pan Zheng-Qing (潘政清), Cai Hai-Wen (蔡海文), Qu Rong-Hui (瞿荣辉). Chin. Phys. B, 2014, 23(11): 110703.
[9] Interfacial thermal resistance between high-density polyethylene (HDPE) and sapphire
Zheng Kun (郑鲲), Zhu Jie (祝捷), Ma Yong-Mei (马永梅), Tang Da-Wei (唐大伟), Wang Fo-Song (王佛松). Chin. Phys. B, 2014, 23(10): 107307.
[10] Numerical investigation of the enhanced unidirectional surface plasmon polaritons generator
Zhang Zhi-Dong (张志东), Wang Hong-Yan (王红艳), Zhang Zhong-Yue (张中月), Wang Hui (王辉). Chin. Phys. B, 2014, 23(1): 017801.
[11] Influence of laser linewidth on performance of Brillouin optical time domain reflectometry
Hao Yun-Qi (郝蕴琦), Ye Qing (叶青), Pan Zheng-Qing (潘政清), Cai Hai-Wen (蔡海文), Qu Rong-Hui (瞿荣辉). Chin. Phys. B, 2013, 22(7): 074214.
[12] A compact frequency selective stop-band splitter by using Fabry–Perot nanocavity in a T-shape waveguide
M Afshari Bavil, Sun Xiu-Dong (孙秀冬). Chin. Phys. B, 2013, 22(4): 047808.
[13] Improving lithographic masks with the assistance of indentations
Guo Ying-Nan(郭英楠), Li Xu-Feng(李旭峰), Pan Shi(潘石), Wang Qiao(王乔), Wang Shuo(王硕), and Wu Yong-Kuan(吴永宽) . Chin. Phys. B, 2012, 21(5): 057301.
[14] A functional probe with bowtie aperture and bull's eye structure for nanolithograph
Wang Shuo (王硕), Li Xu-Feng (李旭峰), Wang Qiao (王乔), Guo Ying-Yan (郭英楠), Pan Shi (潘石). Chin. Phys. B, 2012, 21(10): 107302.
[15] An optical rotation sensor based on dispersive slow-light medium
Wang Nan(王楠), Zhang Yun-Dong(掌蕴东), and Yuan Ping(袁萍). Chin. Phys. B, 2011, 20(7): 074207.
No Suggested Reading articles found!