Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 100203    DOI: 10.1088/1674-1056/24/10/100203
GENERAL Prev   Next  

Conservative method for simulation of a high-order nonlinear Schrödinger equation with a trapped term

Cai Jia-Xiang (蔡加祥), Bai Chuan-Zhi (柏传志), Qin Zhi-Lin (秦志林)
School of Mathematical Science, Huaiyin Normal University, Huaian 223300, China
Abstract  We propose a new scheme for simulation of a high-order nonlinear Schrödinger equation with a trapped term by using the mid-point rule and Fourier pseudospectral method to approximate time and space derivatives, respectively. The method is proved to be both charge- and energy-conserved. Various numerical experiments for the equation in different cases are conducted. From the numerical evidence, we see the present method provides an accurate solution and conserves the discrete charge and energy invariants to machine accuracy which are consistent with the theoretical analysis.
Keywords:  Schrödinger equation      Fourier pseudospectral method      conservation law      fast Fourier transform  
Received:  07 May 2015      Revised:  25 June 2015      Accepted manuscript online: 
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
  02.70.Jn (Collocation methods)  
  02.70.Hm (Spectral methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11201169 and 11271195) and the Qing Lan Project of Jiangsu Province, China.
Corresponding Authors:  Cai Jia-Xiang     E-mail:  thomasjeer@sohu.com

Cite this article: 

Cai Jia-Xiang (蔡加祥), Bai Chuan-Zhi (柏传志), Qin Zhi-Lin (秦志林) Conservative method for simulation of a high-order nonlinear Schrödinger equation with a trapped term 2015 Chin. Phys. B 24 100203

[1] Scott A G, Chu F Y and Mciaughhn D W 1973 Proc. IEEE 61 1443
[2] Robinson M P 1997 Comput. Math. Appl. 33 39
[3] Chen J B, Qin M Z and Tang Y F 2002 Comput. Math. Appl. 43 1095
[4] Hong J L, Liu X and Li C 2007 J. Comput. Phys. 226 1968
[5] Guan H, Jiao Y, Liu J and Tang Y 2009 Commun. Comput. Phys. 6 639
[6] Pérez-García V M and Liu X 2003 Appl. Comput. Comput. 144 215
[7] Wang H 2005 Appl. Math. Comput. 170 17
[8] Dehghan M and Taleei A 2010 Numer. Meth. Part. D. E. 26 979
[9] Hong J L and Kong L H 2010 Commun. Comput. Phys. 7 613
[10] Chao H Y 1987 J. Comput. Math. 5 272
[11] Zeng W P 1999 J. Comput. Math. 17 133
[12] Kong L H, Hong J L, Wang L and Fu F F 2009 J. Comput. Appl. Math. 231 664
[13] Chen J B and Qin M 2001 Electron. Trans. Numer. Anal. 12 193
[14] Cai J X and Liang H 2012 Chin. Phys. Lett. 29 080201
[15] Wang J 2009 J. Phys. A: Math. Theor. 42 085205
[16] Cai J X and Wang Y S 2013 Chin. Phys. B 22 060207
[17] Lv Z Q, Wang Y S and Song Y Z 2013 Chin. Phys. Lett. 30 030201
[18] Qian X, Song S H, Gao E and Li W B 2012 Chin. Phys. B 21 070206
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[3] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[4] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[5] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[6] Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method
Zillur Rahman, M Zulfikar Ali, and Harun-Or Roshid. Chin. Phys. B, 2021, 30(5): 050202.
[7] Collapse arrest in the space-fractional Schrödinger equation with an optical lattice
Manna Chen(陈曼娜), Hongcheng Wang(王红成), Hai Ye(叶海), Xiaoyuan Huang(黄晓园), Ye Liu(刘晔), Sumei Hu(胡素梅), and Wei Hu(胡巍). Chin. Phys. B, 2021, 30(10): 104206.
[8] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[9] A high performance fast-Fourier-transform spectrum analyzer for measuring spin noise spectrums
Yu Tong(仝煜), Lin Wang(王淋), Wen-Zhe Zhang(张闻哲), Ming-Dong Zhu(朱明东), Xi Qin(秦熙), Min Jiang(江敏), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2020, 29(9): 090704.
[10] Two integrable generalizations of WKI and FL equations: Positive and negative flows, and conservation laws
Xian-Guo Geng(耿献国), Fei-Ying Guo(郭飞英), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2020, 29(5): 050201.
[11] An extension of integrable equations related to AKNS and WKI spectral problems and their reductions
Xian-Guo Geng(耿献国), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2018, 27(4): 040201.
[12] A local energy-preserving scheme for Zakharov system
Qi Hong(洪旗), Jia-ling Wang(汪佳玲), Yu-Shun Wang(王雨顺). Chin. Phys. B, 2018, 27(2): 020202.
[13] Residual symmetry, interaction solutions, and conservation laws of the (2+1)-dimensional dispersive long-wave system
Ya-rong Xia(夏亚荣), Xiang-peng Xin(辛祥鹏), Shun-Li Zhang(张顺利). Chin. Phys. B, 2017, 26(3): 030202.
[14] Local structure-preserving methods for the generalized Rosenau-RLW-KdV equation with power law nonlinearity
Jia-Xiang Cai(蔡加祥), Qi Hong(洪旗), Bin Yang(杨斌). Chin. Phys. B, 2017, 26(10): 100202.
[15] Novel Fourier-based iterative reconstruction for sparse fan projection using alternating direction total variation minimization
Zhao Jin(金朝), Han-Ming Zhang(张瀚铭), Bin Yan(闫镔), Lei Li(李磊), Lin-Yuan Wang(王林元), Ai-Long Cai(蔡爱龙). Chin. Phys. B, 2016, 25(3): 038701.
No Suggested Reading articles found!