Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 097703    DOI: 10.1088/1674-1056/23/9/097703
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Li-N dual-doped ZnO thin films prepared by an ion beam enhanced deposition method

Xie Jian-Sheng (谢建生), Chen Qiang (陈强)
Functional Materials Laboratory, Changzhou University, Changzhou 213016, China
Abstract  Li-N dual-doped ZnO films [ZnO:(Li,N)] with Li doping concentrations of 3 at.%-5 at.% were grown on a glass substrate using an ion beam enhanced deposition (IBED) method. An optimal p-type ZnO:(Li,N) film with the resistivity of 11.4 Ω·cm was obtained by doping 4 at.% of Li and 5 sccm flow ratio of N2. The ZnO:(Li,N) films exhibited a wurtzite structure and good transmittance in the visible region. The p-type conductive mechanism of ZnO:(Li,N) films are attributed to the Li substitute Zn site (LiZn) acceptor. N doping in ZnO can forms the Lii-NO complex, which depresses the compensation of Li occupy interstitial site (Lii) donors for LiZn acceptor and helps to achieve p-type ZnO:(Li,N) films. Room temperature photoluminescence measurements indicate that the UV peak (381 nm) is due to the shallow acceptors LiZn in the p-type ZnO:(Li,N) films. The band gap of the ZnO:(Li,N) films has a red-shift after p-type doping.
Keywords:  ZnO      ion beam enhanced deposition      photoluminescence  
Received:  21 March 2014      Revised:  16 May 2014      Accepted manuscript online: 
PACS:  77.55.hf (ZnO)  
  81.15.Jj (Ion and electron beam-assisted deposition; ion plating)  
  78.55.-m (Photoluminescence, properties and materials)  
Corresponding Authors:  Chen Qiang     E-mail:  dishuimolan@163.com

Cite this article: 

Xie Jian-Sheng (谢建生), Chen Qiang Li-N dual-doped ZnO thin films prepared by an ion beam enhanced deposition method 2014 Chin. Phys. B 23 097703

[1] von Wenckstern H, Schmidt H, Brandt M, Lajn A Pickenhain R, Lorenz M, Grundmann M, Hofmann D M, Polity A, Meyer B K, Saal H, Binnewies M, Borger A, Becker K D, Tikhomirov V A and Jug K 2009 Prog. Solid State Chem. 37 153
[2] Yamamoto T 2002 Thin Solid Films 420-421 100
[3] Jayanthi K, Chawla S, Sood K N, Chhibara M and Singh S 2009 Appl. Surf. Sci. 255 5869
[4] Nayak J, Kimura S and Nozaki S 2009 J. Lumin. 129 12
[5] Huang G Y, Wang C Y and Wang J T 2009 J. Phys.: Condens. Matter 21 345802
[6] Li L, Shan C X, Li B H, Yao B, Zhang J Y, Zhao D X, Zhang Z Z, Shen D Z, Fan X W and Lu Y M 2008 J. Phys. D: Appl. Phys. 41 245402
[7] Yao B, Xie Y P, Cong C X, Zhao H J, Sui Y R, Yang T and He Q 2009 J. Phys. D: Appl. Phys. 42 015407
[8] Yu D, Hu L, Qiao S, Zhang H, Len S E A, Len L K, Fu Q, Chen X and Sun K 2009 J. Phys. D: Appl. Phys. 42 055110
[9] Zhao X W, Gao X Y, Chen X M, Chen C and Zhao M K 2013 Chin. Phys. B 22 024202
[10] Yamamoto T and Katayama-Yoshida H 2000 J. Cryst. Growth 214-215 552
[11] Yamamoto T and Katayama-Yoshida H 2001 Physica B 302-303 155
[12] Hou Q Y, Li J J, Zhao C W, Ying C and Zhang Y 2011 Physica B 406 1956
[13] Eun C L, Kim Y S, Jin Y G and Chang K J 2001 Phys. Rev. B 64 085120
[14] Xue S W, Zu X T, Shao L X, Yuan Z L, Xiang X and Deng H 2008 Chin. Phys. B 17 2240
[15] Lee E C and Chang K J 2004 Phys. Rev. B 70 115210
[16] Gai Y Q, Tang G and Li J B 2011 J. Phys. Chem. Solids 72 725
[17] Duan X Y, Yao R H and Zhao Y J 2008 Appl. Phys. A 91 467
[18] Tang X, Cheng X F, Wagner D, Lü H F and Zhang Q Y 2011 J. Appl. Phys. 110 013711
[19] Lu J G, Zhang Y Z, Ye Z Z, Zhu L P, Wang L, Zhao B H and Liang Q L 2006 Appl. Phys. Lett. 88 222114
[20] Zhao T T, Yang T, Yao B, Cong C X, Sui Y R, Xing G Z, Sun Y, Su S C, Zhu H and Shen D Z 2010 Thin Solid Films 518 3289
[21] Zhang Y Z, Lu J G, Ye Z Z, He H P, Zhu L P, Zhao B H and Wang L 2008 Appl. Surf. Sci. 254 1993
[22] Ravichandran C, Srinivasan G, Lennon C, Sivanathan S and Kumar J 2010 Mater. Sci. Semicond. Process. 13 46
[23] Ko H J, Chen Y F, Hong S K and Yao T 2003 J. Cryst. Growth 251 628
[24] Yuan N Y, Li J H, Fan L N, Wang X Q and Zhou Y 2006 J. Cryst. Growth 290 156
[25] Zhang D L, Zhang J B, Guo Z and Miao X S 2011 J. Alloy. Compd. 509 5962
[26] Zeng Y J, Ye Z Z, Xu W Z, Chen L L, Li D Y, Zhu L P, Zhao B H and Hu Y L 2005 J. Cryst. Growth 283 180
[27] Prasada R T and Santhosh K M C 2011 J. Alloy. Compd. 509 8676
[28] Yousefi R, Khorsand Z A and Jamali-Sheini F 2013 Ceram. Int. 39 1371
[29] Nasr B, Gupta S D, Wang D, Mechau N, Kruk R and Hahn H 2010 J. Appl. Phys. 108 103721
[30] Shet S, Ahn K S, Yan Y, Deutsch T, Chrustowski K M, Turner J, Al-Jassim M and Ravindra N 2008 J. Appl. Phys. 103 073504
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[3] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[4] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[5] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[6] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[7] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[8] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[9] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[10] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[11] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[12] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[13] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[14] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[15] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
No Suggested Reading articles found!