CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Li-N dual-doped ZnO thin films prepared by an ion beam enhanced deposition method |
Xie Jian-Sheng (谢建生), Chen Qiang (陈强) |
Functional Materials Laboratory, Changzhou University, Changzhou 213016, China |
|
|
Abstract Li-N dual-doped ZnO films [ZnO:(Li,N)] with Li doping concentrations of 3 at.%-5 at.% were grown on a glass substrate using an ion beam enhanced deposition (IBED) method. An optimal p-type ZnO:(Li,N) film with the resistivity of 11.4 Ω·cm was obtained by doping 4 at.% of Li and 5 sccm flow ratio of N2. The ZnO:(Li,N) films exhibited a wurtzite structure and good transmittance in the visible region. The p-type conductive mechanism of ZnO:(Li,N) films are attributed to the Li substitute Zn site (LiZn) acceptor. N doping in ZnO can forms the Lii-NO complex, which depresses the compensation of Li occupy interstitial site (Lii) donors for LiZn acceptor and helps to achieve p-type ZnO:(Li,N) films. Room temperature photoluminescence measurements indicate that the UV peak (381 nm) is due to the shallow acceptors LiZn in the p-type ZnO:(Li,N) films. The band gap of the ZnO:(Li,N) films has a red-shift after p-type doping.
|
Received: 21 March 2014
Revised: 16 May 2014
Accepted manuscript online:
|
PACS:
|
77.55.hf
|
(ZnO)
|
|
81.15.Jj
|
(Ion and electron beam-assisted deposition; ion plating)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
Corresponding Authors:
Chen Qiang
E-mail: dishuimolan@163.com
|
Cite this article:
Xie Jian-Sheng (谢建生), Chen Qiang Li-N dual-doped ZnO thin films prepared by an ion beam enhanced deposition method 2014 Chin. Phys. B 23 097703
|
[1] |
von Wenckstern H, Schmidt H, Brandt M, Lajn A Pickenhain R, Lorenz M, Grundmann M, Hofmann D M, Polity A, Meyer B K, Saal H, Binnewies M, Borger A, Becker K D, Tikhomirov V A and Jug K 2009 Prog. Solid State Chem. 37 153
|
[2] |
Yamamoto T 2002 Thin Solid Films 420-421 100
|
[3] |
Jayanthi K, Chawla S, Sood K N, Chhibara M and Singh S 2009 Appl. Surf. Sci. 255 5869
|
[4] |
Nayak J, Kimura S and Nozaki S 2009 J. Lumin. 129 12
|
[5] |
Huang G Y, Wang C Y and Wang J T 2009 J. Phys.: Condens. Matter 21 345802
|
[6] |
Li L, Shan C X, Li B H, Yao B, Zhang J Y, Zhao D X, Zhang Z Z, Shen D Z, Fan X W and Lu Y M 2008 J. Phys. D: Appl. Phys. 41 245402
|
[7] |
Yao B, Xie Y P, Cong C X, Zhao H J, Sui Y R, Yang T and He Q 2009 J. Phys. D: Appl. Phys. 42 015407
|
[8] |
Yu D, Hu L, Qiao S, Zhang H, Len S E A, Len L K, Fu Q, Chen X and Sun K 2009 J. Phys. D: Appl. Phys. 42 055110
|
[9] |
Zhao X W, Gao X Y, Chen X M, Chen C and Zhao M K 2013 Chin. Phys. B 22 024202
|
[10] |
Yamamoto T and Katayama-Yoshida H 2000 J. Cryst. Growth 214-215 552
|
[11] |
Yamamoto T and Katayama-Yoshida H 2001 Physica B 302-303 155
|
[12] |
Hou Q Y, Li J J, Zhao C W, Ying C and Zhang Y 2011 Physica B 406 1956
|
[13] |
Eun C L, Kim Y S, Jin Y G and Chang K J 2001 Phys. Rev. B 64 085120
|
[14] |
Xue S W, Zu X T, Shao L X, Yuan Z L, Xiang X and Deng H 2008 Chin. Phys. B 17 2240
|
[15] |
Lee E C and Chang K J 2004 Phys. Rev. B 70 115210
|
[16] |
Gai Y Q, Tang G and Li J B 2011 J. Phys. Chem. Solids 72 725
|
[17] |
Duan X Y, Yao R H and Zhao Y J 2008 Appl. Phys. A 91 467
|
[18] |
Tang X, Cheng X F, Wagner D, Lü H F and Zhang Q Y 2011 J. Appl. Phys. 110 013711
|
[19] |
Lu J G, Zhang Y Z, Ye Z Z, Zhu L P, Wang L, Zhao B H and Liang Q L 2006 Appl. Phys. Lett. 88 222114
|
[20] |
Zhao T T, Yang T, Yao B, Cong C X, Sui Y R, Xing G Z, Sun Y, Su S C, Zhu H and Shen D Z 2010 Thin Solid Films 518 3289
|
[21] |
Zhang Y Z, Lu J G, Ye Z Z, He H P, Zhu L P, Zhao B H and Wang L 2008 Appl. Surf. Sci. 254 1993
|
[22] |
Ravichandran C, Srinivasan G, Lennon C, Sivanathan S and Kumar J 2010 Mater. Sci. Semicond. Process. 13 46
|
[23] |
Ko H J, Chen Y F, Hong S K and Yao T 2003 J. Cryst. Growth 251 628
|
[24] |
Yuan N Y, Li J H, Fan L N, Wang X Q and Zhou Y 2006 J. Cryst. Growth 290 156
|
[25] |
Zhang D L, Zhang J B, Guo Z and Miao X S 2011 J. Alloy. Compd. 509 5962
|
[26] |
Zeng Y J, Ye Z Z, Xu W Z, Chen L L, Li D Y, Zhu L P, Zhao B H and Hu Y L 2005 J. Cryst. Growth 283 180
|
[27] |
Prasada R T and Santhosh K M C 2011 J. Alloy. Compd. 509 8676
|
[28] |
Yousefi R, Khorsand Z A and Jamali-Sheini F 2013 Ceram. Int. 39 1371
|
[29] |
Nasr B, Gupta S D, Wang D, Mechau N, Kruk R and Hahn H 2010 J. Appl. Phys. 108 103721
|
[30] |
Shet S, Ahn K S, Yan Y, Deutsch T, Chrustowski K M, Turner J, Al-Jassim M and Ravindra N 2008 J. Appl. Phys. 103 073504
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|