Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 097704    DOI: 10.1088/1674-1056/23/9/097704
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Stability and elastic properties of NbxCy compounds

Gao Xu-Peng (高旭鹏)a, Jiang Ye-Hua (蒋业华)a, Liu Yang-Zhen (刘洋赈)a, Zhou Rong (周荣)a, Feng Jing (冯晶)b
a Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China;
b School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
Abstract  Density functional theory (DFT) is applied to investigate the stability and mechanical properties of NbxCy compounds. The structures of NbxCy compounds are optimized, and the results are in good agreement with previous work. The calculated results of the cohesive energy and the formation enthalpy of NbxCy show that they are thermodynamically stable structures, except for Pmc21-Nb2C. The mechanical properties such as the bulk modulus, Young's modulus, the shear modulus, and Poisson's ratio are obtained by Voigt-Reuss-Hill approximation. The results show that the Young's modulus and shear modulus of NbC are larger than other NbxCy compounds. The mechanical anisotropy is characterized by calculating several different anisotropic indexes and factors, such as universal anisotropic index (AU), shear anisotropic factors (A1, A2, A3), and percent anisotropy (AB and AG). The surface constructions of bulk and Young's moduli are illustrated to indicate the mechanical anisotropy. The hardness of NbxCy compounds is also discussed in this paper. The estimated hardness for all NbxCy compounds is less than 20 GPa.
Keywords:  ceramic      carbides      anisotropy      hardness  
Received:  13 November 2013      Revised:  14 January 2014      Accepted manuscript online: 
PACS:  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
  75.30.Gw (Magnetic anisotropy)  
  46.55.+d (Tribology and mechanical contacts)  
  51.35.+a (Mechanical properties; compressibility)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51171074 and 51261013).
Corresponding Authors:  Jiang Ye-Hua     E-mail:  jiangyehua@kmust.edu.cn

Cite this article: 

Gao Xu-Peng (高旭鹏), Jiang Ye-Hua (蒋业华), Liu Yang-Zhen (刘洋赈), Zhou Rong (周荣), Feng Jing (冯晶) Stability and elastic properties of NbxCy compounds 2014 Chin. Phys. B 23 097704

[1] Bazhanov D I, Mutigullin I V, Knizhnik A A, Potapkin B V, Bagaturyants A A, Fonseca L R C and Stoker M W 2010 J. Appl. Phys. 107 083521
[2] Clayton J D 2010 J. Appl. Phys. 107 013520
[3] Wittkowski T, Jung K, Hillebrands B and Comins J D 2006 J. Appl. Phys. 100 073513
[4] Chen X R, Wang Y J and Chang J 2007 Chin. Phys. Lett. 24 2642
[5] Zhang T, Liu B and Song Z T 2004 Chin. Phys. Lett. 21 741
[6] Duo X Z, Men C L and Zhang M 2001 Chin. Phys. Lett. 18 1282
[7] Farah A F, Crnkovic O R and Canale LC F 2001 J. Mater. Eng. Perf. 10 42
[8] Zhi X H, Xing J D, Fu H G and Xiao B 2008 Mater. Lett. 62 857
[9] Sen U 2004 Mater. Chem. Phys. 86 189
[10] Sen U 2005 Thin Solid Films 483 152
[11] Landesmant J P, Chtistensen A N, Denovion C H, Lorenzelli N and Convert P 1985 J. Phys. C 18 809
[12] Du J, Yang Y C, Fan Z, Yang X, Cheng X J, Gan Y P, Hui H, Li X D, Xiao D L, Wen K Z and Xin Y T 2013 J. Alloy. Compd. 560 142
[13] Volodin V N, Teleushev Y Z and Zhakanbaev E A 2013 Physics of Metals and Metallography 114 395
[14] Khvan A V, Hallstedt B and Chang K 2012 Calphad 39 54
[15] Hohenberg P and Kohn W 1964 Phys. Rev. 136 864
[16] Segall M D, Lindan P J D and Probert M J 2002 J. Phys.: Condens. Matter 14 2717
[17] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[18] Perdew J P, Burke K and Emzerhof M 1996 Phys. Rev. Lett. 77 3865
[19] Zhou C T, Xiao B, Feng J, Chen J C, Zhou R, Xing J D and Li Y F 2009 Physica B 404 1701
[20] Yvon K, Nowotny H and Kieffer R 1976 Monatshefte fuer Chemie und verwandte Teile anderer Wissenschaften 98 34
[21] Elliott R O and Kempter C P 1958 J. Chem. Phys. 62 630
[22] Stroms E K and Krikorian N H 1960 J. Phys. Chem. 64 1471
[23] Khaenko B V and Gnitetskii O A 1993 Crystallography Rep. 38 55
[24] Remple A A and Gusev A I 1985 Kristallografiya 30 1112
[25] Khaenko B V and Sivak O P 1990 Kristallografiya 35 1110
[26] Zubkov V G, Dubrovskaya L B, Gel'd P V, Tskhai V A and Dorofeev 1969 Doklady Akademii Nauk SSSR 184 874
[27] Wu L L, Wang Y C, Yan Z G, Zhang J W, Xiao F R and Liao B 2013 J. Alloy. Compd. 561 220
[28] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[29] Haddou A, Khachai H, Khenata R, Litimein F, Bouhemadou A, Murtaza G, Alahmed Z A, Bin-Omran S and Abbar B 2013 J. Mater. Sci. 48 8235
[30] Liu Y Z, Jiang Y H, Feng J and Zhou R 2013 Physica B 419 45
[31] Feng J, Xiao B, Chen J, Du Y, Yu J and Zhou R 2011 Materials Design 32 3231
[32] Brown H L, Armstrong P E and Kempter C P 1966 J. Chem. Phys. 45 547
[33] Letsoalo T and Lowther J E 2008 Physica B 403 2760
[34] Ahmed R, Aleem F E, Hashemifar S J and Akbarzadeh H 2007 Physica B 400 297
[35] Gilman J J, Cumberland R W and Kaner R B 2006 Int. J. Refract. Met. Hard Mater. 24 1
[36] Feng J, Xiao B, Zhou R, Pan W and Clarke D R 2012 Acta Mater. 60 3380
[37] Pugh S F 1954 Philos. Mag. 45 823
[38] Ravindran P, Fast L, Korzhavyi P A and Johansson B 1998 J. Appl. Phys. 84 4891
[39] Gao F, He J, Wu E, Liu S, Yu D, Li D, Zhang S and Tian Y 2003 Phys. Rev. Lett. 91 015502
[40] Zhang X, Luo X, Han J, Li J and Han W 2008 Comput. Mater. Sci. 44 411
[41] Yu R, Jiang Y H, Feng J, Zhou R F, Zhang Y Q and Zhou R 2013 J. Mater. Sci. 48 3443
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[3] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[6] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[7] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[8] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[9] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[10] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[11] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[12] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[13] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[14] Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe
Nadezda Korepanova, Long Gu(顾龙), Mihai Dima, and Hushan Xu(徐瑚珊). Chin. Phys. B, 2022, 31(2): 026103.
[15] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
No Suggested Reading articles found!