Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 097501    DOI: 10.1088/1674-1056/23/9/097501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of rotating noncircular scatterers on spin-wave band gaps of two-dimensional magnonic crystals

Yang Hui (杨慧)a b, Yun Guo-Hong (云国宏)a b c, Cao Yong-Jun (曹永军)a b
a College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China;
b Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Hohhot 010021, China;
c College of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
Abstract  Using the plane-wave expansion method, the spin-wave band structures of two-dimensional magnonic crystals consisting of square arrays of different shape scatterers are calculated numerically, and the effects of rotating rectangle and hexagon scaterers on the gaps are studied, respectively. The results show that the gaps can be substantially opened and tuned by rotating the scatterers. This approach should be helpful in designing magnonic crystals with desired gaps.
Keywords:  magnonic crystal      band gap      rotating      optimizing  
Received:  25 December 2013      Revised:  25 March 2014      Accepted manuscript online: 
PACS:  75.30.Ds (Spin waves)  
  75.50.Tt (Fine-particle systems; nanocrystalline materials)  
  75.75.-c (Magnetic properties of nanostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11264028 and 11072104), the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No. 2012MS0114), and the School Scientific Research Funds of Inner Mongolia Normal University of China (Grant Nos. 2013YJRC007 and 2013ZRYB19).
Corresponding Authors:  Yun Guo-Hong     E-mail:  ndghyun@imu.edu.cn;phyjcao@imnu.edu.cn

Cite this article: 

Yang Hui (杨慧), Yun Guo-Hong (云国宏), Cao Yong-Jun (曹永军) Effects of rotating noncircular scatterers on spin-wave band gaps of two-dimensional magnonic crystals 2014 Chin. Phys. B 23 097501

[1] Nikitov S A, Tailhades Ph and Tsai C S 2001 J. Magn. Magn. Mater. 236 320
[2] Gubbiotti G, Tacchi S, Madami M, Carlotti G, Adeyeye A O and Kostylev M 2010 J. Phys. D: Appl. Phys. 43 264003
[3] Kruglyak V V, Sokolovskii M L, Tkachenko V S and Kuchko A N 2006 J. Appl. Phys. 99 08C906
[4] Yang H, Yun G H and Cao Y J 2012 J. Appl. Phys. 111 013908
[5] Kim S K, Lee K S and Han D S 2009 Appl. Phys. Lett. 95 082507
[6] Yang H, Yun G H and Cao Y J 2012 J. Appl. Phys. 112 103911
[7] Kim S K, Lee K S and Han D S 2009 Appl. Phys. Lett. 95 082507
[8] Ma F S, Lim H S, Wang Z K, Piramanayagam S N, Ng S C and Kuok M H 2011 Appl. Phys. Lett. 98 153107
[9] Wang Q, Zhong Z Y, Jin L C, Tang X L, Bai F M, Zhang H W and Beach G S D 2013 J. Magn. Magn. Mater. 340 23
[10] Bertotti G, Serpico C, Mayergoyz I D, Magni A, d'Aquino M and Bonin R 2005 Phys. Rev. Lett. 94 127206
[11] Bruno P and Dugaev V K 2005 Phys. Rev. B 72 241302
[12] Kostylev M P, Serga A A, Schneider T, Leven B and Hillebrands B 2005 Appl. Phys. Lett. 87 153501
[13] Vasseur J O, Dobrzynski L, Djafari-Rouhani B and Puszkarski H 1996 Phys. Rev. B 54 1043
[14] Puszkarski H and Krawczyk M 2003 Solid State Phenom. 94 125
[15] Krawczyk M and Puszkarski H 2008 Phys. Rev. B 77 054437
[16] Wang Z K, Zhang V L, Lim H S, Ng S C, Kuok M H, Jain S and Adeyeye A O 2010 ACS Nano 4 643
[17] Wang Z K, Zhang V L, Lim H S, Ng S C, Kuok M H, Jain S and Adeyeye A O 2009 Appl. Phys. Lett. 94 083112
[18] Kruglyak V V and Kuchko A N 2001 Phys. Met. Metallogr. 92 211
[19] Tiwari R P and Stroud D 2010 Phys. Rev. B 81 220403
[20] Tkachenko V S, Kruglyak V V and Kuchko A N 2010 Phys. Rev. B 81 024405
[21] Cao Y J, Yun G H, Liang X X and Bai N S 2010 J. Phys. D: Appl. Phys. 43 305005
[22] Yang H, Yun G H and Cao Y J 2011 J. Phys. D: Appl. Phys. 44 455001
[23] Mamica S, Krawczyk M and Klos J W 2012 Advances in Condensed Matter Physics 2012 161387
[24] Wang Q, Zhang H W, Tang X L, Su H, Bai F M, Jing Y L and Zhong Z Y 2014 J. Phys. D: Appl. Phys. 47 065004
[25] Cao Y J, Yun G H and Bai N S 2011 Acta Phys. Sin. 60 077502 (in Chinese)
[1] Formalism of rotating-wave approximation in high-spin system with quadrupole interaction
Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2023, 32(3): 030301.
[2] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[3] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[4] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[5] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[6] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[7] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[8] Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon
Ya-Bin Ma(马亚斌), Tao Ouyang(欧阳滔), Yuan-Ping Chen(陈元平), and Yue-E Xie(谢月娥). Chin. Phys. B, 2021, 30(7): 077103.
[9] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[10] Effects of initial electronic state on vortex patterns in counter-rotating circularly polarized attosecond pulses
Qi Zhen(甄琪), Jia-He Chen(陈佳贺), Si-Qi Zhang(张思琪), Zhi-Jie Yang(杨志杰), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2021, 30(2): 024203.
[11] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[12] Accurate GW0 band gaps and their phonon-induced renormalization in solids
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2021, 30(11): 117101.
[13] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
[14] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[15] Photoluminescence in wide band gap corundum Mg4Ta2O9 single crystals
Liang Li(李亮), Yu-Lu Zheng(郑雨露), Yu-Xin Hu(胡雨馨), Fang-Fei Li(李芳菲), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(8): 083301.
No Suggested Reading articles found!