Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 096501    DOI: 10.1088/1674-1056/23/9/096501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Thermal conductivity of multi-walled carbon nanotubes:Molecular dynamics simulations

Hu Guo-Jie (胡帼杰), Cao Bing-Yang (曹炳阳)
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Abstract  Heat conduction in single-walled carbon nanotubes (SWCNTs) has been investigated by using various methods, while less work has been focused on multi-walled carbon nanotubes (MWCNTs). The thermal conductivities of the double-walled carbon nanotubes (DWCNTs) with two different temperature control methods are studied by using molecular dynamics (MD) simulations. One case is that the heat baths (HBs) are imposed only on the outer wall, while the other is that the HBs are imposed on both the two walls. The results show that the ratio of the thermal conductivity of DWCNTs in the first case to that in the second case is inversely proportional to the ratio of the cross-sectional area of the DWCNT to that of its outer wall. In order to interpret the results and explore the heat conduction mechanisms, the inter-wall thermal transport of DWCNTs is simulated. Analyses of the temperature profiles of a DWCNT and its two walls in the two cases and the inter-wall thermal resistance show that in the first case heat is almost transported only along the outer wall, while in the second case a DWCNT behaves like parallel heat transport channels in which heat is transported along each wall independently. This gives a good explanation of our results and presents the heat conduction mechanisms of MWCNTs.
Keywords:  multi-walled carbon nanotubes      thermal conductivity      temperature control method      molecular dynamics simulation  
Received:  17 January 2014      Revised:  21 February 2014      Accepted manuscript online: 
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  65.80.Ck (Thermal properties of graphene)  
  68.90.+g (Other topics in structure, and nonelectronic properties of surfaces and interfaces; thin films and low-dimensional structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51322603, 51136001, and 51356001), the Program for New Century Excellent Talents in University, Science Fund for Creative Research Groups of China (Grant No. 51321002), and the Initiative Scientific Research Program of Tsinghua University, China.
Corresponding Authors:  Cao Bing-Yang     E-mail:  caoby@tsinghua.edu.cn

Cite this article: 

Hu Guo-Jie (胡帼杰), Cao Bing-Yang (曹炳阳) Thermal conductivity of multi-walled carbon nanotubes:Molecular dynamics simulations 2014 Chin. Phys. B 23 096501

[1] Baughman R H, Zakhidov A A and de Heer W A 2002 Science 297 787
[2] Biercuk M J, Llaguno M C, Radosavljevic M, Hyun J K, Johnson A T and Fischer J E 2002 Appl. Phys. Lett. 80 2767
[3] Alexandrou I, Kymakis E and Amaratunga G A J 2002 Appl. Phys. Lett. 80 1435
[4] Choi S U S, Zhang Z G, Yu W, Lockwood F E and Grulke E A 2001 Appl. Phys. Lett. 79 2252
[5] Eastman J A, Phillpot S R, Choi S U S and Keblinski P 2004 Annu. Rev. Mater. Rev. 34 219
[6] Ujereh S, Fisher T and Mudawar I 2007 Int. J. Heat Mass Transfer 50 4023
[7] Mingo N and Broido D A 2005 Nano Lett. 5 1221
[8] Wang J and Wang J S 2006 Appl. Phys. Lett. 88 111909
[9] Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H and Shimizu T 2005 Phys. Rev. Lett. 95 065502
[10] Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett. 87 215502
[11] Pop E, Mann D, Wang Q, Goodson K and Dai H 2006 Nano Lett. 6 96
[12] Yu C, Shi L, Yao Z, Li D and Majumdar A 2005 Nano Lett. 5 1842
[13] Chiu H Y, Deshpande V V, Postma H W C, Lau C N, Miko C, Forro L and Bockrath M 2005 Phys. Rev. Lett. 95 226101
[14] Yi W, Lu L, Zhang D L, Pan Z W and Xie S S 1999 Phys. Rev. B 59 9015
[15] Hone J, Llaguno M C, Nemes N M, Johnson A T, Fischer J E, Walters D A, Casavant M J, Schmidt J and Smalley R E 2000 Appl. Phys. Lett. 77 666
[16] Aliev A E, Lima M H, Silverman E M and Baughman R H 2010 Nanotechnology 21 035709
[17] Hu L J, Liu J, Liu Z, Qiu C Y, Zhou H Q and Sun L F 2011 Chin. Phys. B 20 096101
[18] Berber S, Kwon Y K and Tomanek D 2000 Phys. Rev. Lett. 84 4613
[19] Maruyama S 2002 Physica B 323 193
[20] Alaghamandi M, Algaer E, Bohm M C and Muller-Plathe F 2009 Nanotechnology 20 115704
[21] Hou Q W, Cao B Y and Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese)
[22] Zhang W, Zhu Z Y, Wang F, Wang T, Sun L and Wang Z 2004 Nanotechnology 15 936
[23] Hu G J and Cao B Y 2012 Mol. Simul. 38 823
[24] Feng D L, Feng Y H, Chen Y, Li W and Zhang X X 2013 Chin. Phys. B 22 016501
[25] Evans D J 1982 Phys. Lett. A 91 457
[26] Hoover W G 1983 Annu. Rev. Phys. Chem. 34 103
[27] Muller-Plathe F 1997 J. Chem. Phys. 106 6082
[28] Hulse R J, Rowley R L and Wilding W V 2005 Int. J. Thermophys. 26 1
[29] Terao T and Muller-Plathe F 2005 J. Chem. Phys. 122 081103
[30] Cao B Y 2008 J. Chem. Phys. 129 074106
[31] Cao B Y and Li Y W 2010 J. Chem. Phys. 133 024106
[32] Nose S 1984 Mol. Phys. 52 255
[33] Hoover W G 1985 Phys. Rev. A 31 1695
[34] Brenner D W 1990 Phys. Rev. B 42 9458
[35] Saito R, Matsuo R, Kimura T, Dresselhaus G and Dresselhaus M S 2001 Chem. Phys. Lett. 348 187
[36] Kapitza P L 1941 J. Phys. (USSR) 4 181
[37] Zhong H and Lukes J R 2006 Phys. Rev. B 74 125403
[38] Evans W J, Shen M and Keblinski P 2012 Appl. Phys. Lett. 100 261908
[39] Hu G J and Cao B Y 2013 J. Appl. Phys. 114 224308
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[4] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[5] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[8] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[9] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[10] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[11] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[12] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[13] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[14] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[15] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
No Suggested Reading articles found!