Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 096201    DOI: 10.1088/1674-1056/23/9/096201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Anisotropy of elasticity and minimum thermal conductivity of monocrystal M4AlC3 (M=Ti, Zr, Hf)

Ding Ai-Ling (丁艾玲), Li Chun-Mei (李春梅), Wang Jin (王瑨), Ao Jing (敖靖), Li Feng (李凤), Chen Zhi-Qian (陈志谦)
Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
Abstract  The elastic constants, elastic anisotropy index, and anisotropic fractional ratios of Ti4AlC3, Zr4AlC3, and Hf4AlC3 are studied by using a plane wave method based on density functional theory. All compounds are characterized by the elastic anisotropy index. The bond length, population, and hardness of the three compounds are calculated. The degrees of hardness are then compared. The minimum thermal conductivity at high temperature limitation in the propagation direction of [0001] (0001) is calculated by the acoustic wave velocity, which indicates that the thermal conductivity is also anisotropic. Finally, the electronic structures of the compounds are analyzed numerically. We show that the bonding of the M4AlC3 lattice exhibits mixed properties of covalent bonding, ionic bonding, and metallic bonding. Moreover, no energy gap is observed at the Fermi level, indicating that various compounds exhibit metallic conductivity at the ground state.
Keywords:  elastic property      anisotropy      thermal conductivity      electronic structure  
Received:  14 November 2013      Revised:  24 February 2014      Accepted manuscript online: 
PACS:  62.20.D- (Elasticity)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  74.25.Bt (Thermodynamic properties)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51171156), CSTC2012GGYS5001, and CSTC2013JCYJYS5002.
Corresponding Authors:  Chen Zhi-Qian     E-mail:  chen_zq@swu.edu.cn

Cite this article: 

Ding Ai-Ling (丁艾玲), Li Chun-Mei (李春梅), Wang Jin (王瑨), Ao Jing (敖靖), Li Feng (李凤), Chen Zhi-Qian (陈志谦) Anisotropy of elasticity and minimum thermal conductivity of monocrystal M4AlC3 (M=Ti, Zr, Hf) 2014 Chin. Phys. B 23 096201

[1] Barsoum M W 2000 Prog. Solid State Chem. 28 201
[2] Nowotny H 1970 Solid State Chem. 2 27
[3] Emmerlich J, Högberg H, Sasvári S, Per O Å and Hultman L 2004 J. Appl. Phys. 96 4817
[4] Wolfsgruber H, Nowotny H and Benesovsky F 1967 Monatsh. Chem. 98 2401
[5] Wilhelmssona O and Palmquist J P 2004 Appl. Phys. Lett. 85 1066
[6] Etzkorn J, Ade M and Hillebrecht H 2007 Inorg. Chem. 46 1410
[7] Högberg H, Emmerlich J, Eklund P, Wilhelmsson O, Palmquist J P, Jansson U and Hultman L 2006 Adv. Sci. Technol. 45 2648
[8] Procopio A T, Barsoum M W and El-Raghy T 2000 Metal. Mater. Trans. A 31A 333
[9] Magnuson M, Mattesini M, Wilhelmsson O, Emmerlich J, Palmquist J P, Li S, Ahuja R, Hultman L, Eriksson O and Jansson U 2006 Phys. Rev. A 74 205102
[10] Bai Y L, He X D, Li Y B, Zhu C C and Li M W 2009 Solid State Commun. 149 215
[11] Wang J Y, Wang J M, Zhou Y C, Lina Z J and Hu C H 2008 Scr. Mater. 58 1043
[12] Islam M S and Islam A K M A 2011 Physica B 406 275
[13] Barsoum M W and Radovic M 2011 Annu. Rev. Mater. Res. 41 195
[14] Hossain M M, Ali M S and Islam A K M A 2011 Mater. Sci. 1108 0553
[15] Rawn C J, Barsoum M W, El-Raghy T, Procipio A, Hoffmann C M and Hubbard C R 2000 Mater. Res. B 35 1785
[16] Etzkorn J, Ade M and Hillebrecht H 2007 Inorg. Chem. 46 7646
[17] Hu C F, Li F Z, Zhang J, Wang J M, Wang J Y and Zhou Y C 2007 Scr. Mater. 57 893
[18] Palmquist J P, El-Raghy T, Howing J, Wilhemsson O and Sundberg M 2006 Conference of Advanced Ceram & Composites (Abstract No. ICACC-S1-184)
[19] Lin Z J, Zhuo M J, Zhou Y C, Li M S and Wang J Y 2006 J. Mater. Res. 21 2587
[20] Palmquist J P, Li S, Persson P O A, Emmerlich J, Wilhelmsson O, Högberg H, Katsnelson M I, Johansson B, Ahuja R, Eriksson O, Hultman L and Jansson U 2004 Phys. Rev. B 70 165401
[21] Högberg H, Hultman L, Emmerlich J, Joelsson T, Eklund P, Molina-Aldareguia J M, Palmquist J P, Wilhelmsson O and Jansson U 2005 Surf. Coat Technol. 193 6
[22] Högberg H, Eklund P, Emmerlich J, Birch J and Hultman L 2005 J. Mater. Res. 20 779
[23] Hu C F, Li F Z, He L F, Liu M Y, Zhang J, Wang J M, Bao Y W, Wang J Y and Zhou Y C 2008 J. Am. Ceram. Soc. 91 2258
[24] Hohenberg P and Kohn W 1964 Phys. 136 864
[25] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[26] Vanderbilt D 1990 Phys. Rev. B 41 7892
[27] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[28] Broyden C G and Inst J 1970 Math. Appl. 6 222
[29] Fletcher R 1970 Compute. J. 13 317
[30] Goldfarb D 1970 Math. Comput. 24 23
[31] Shanno D F 1970 Math. Comput. 24 647
[32] Voigt W 1928 Lehrbuch der Kristallphysik (Leipzig: B. G. Teubner) p. 574
[33] Reuss A and Angew Z 1929 Math. Mech. 9 49
[34] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[35] Hill R 1952 Proc. Phys. Soc. A 65 350
[36] Güler M and Güler E 2013 Chin. Phys. Lett. 30 056201
[37] Pugh S F 1954 Philos. Mag. 45 823
[38] Ranganathan S I and Starzewski M O 2008 Phys. Rev. Lett. 101 055504
[39] Chung D H and Buessem W R 1967 J. Appl. Phys. 38 2010
[40] Feng J, Xiao B, Zhou R, Pan W and Clarke D R 2012 Acta Mater. 60 3380
[41] Herman R F S 1961 An Introduction to Applied Anisotropic Elasticity (Oxford: Oxford University Press)
[42] Nye J F 1964 Physical Properties of Crystals (Oxford: Clarendon Press)
[43] Gao F M and Gao L H 2010 J. Superhard Mater. 32 148
[44] Gou H Y, Hou L, Zhang J W and Gao F M 2008 Appl. Phys. Lett. 92 241901
[45] Feng J, Xiao B, Wan C L, Qu Z X, Huang Z C, Chen J C, Zhou R and Pan W 2011 Acta Mater. 59 1742
[46] Grimvall G 1999 Thermophysical Properties of Materials (1st edn.) (Oxford: The Netherlands)
[47] Clark D R 2003 Surf. Coat. Technol. 163 67
[48] Cahill D G, Watson S K and Pohl R O 1992 Phys. Rev. B 46 6131
[49] Kittel C 1997 Introduction to Solid State Physics (Now York: John Wiley & Sons)
[50] Wong J, Krisch M, Farber D L, Occelli F, Xu R, Chiang T C, Clatterbuck D, Schwartz A J, Wall M and Boro C 2005 Phys. Rev. B 72 064115
[51] Du Y L 2009 Chin. Phys. Lett. 26 117102
[52] Wang J, Li C M, Ao J, Li F and Chen Z Q 2013 Acta Phys. Sin. 62 087102 (in Chinese)
[53] Quan H J and Gong X G 2000 Chin. Phys. Soc. 9 0656
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[4] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[5] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[6] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[7] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[8] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[9] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[10] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[11] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[12] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[13] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[14] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[15] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
No Suggested Reading articles found!