Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 090310    DOI: 10.1088/1674-1056/23/9/090310
GENERAL Prev   Next  

Fast implementation of length-adaptive privacy amplification in quantum key distribution

Zhang Chun-Mei (张春梅)a, Li Mo (李默)a, Huang Jing-Zheng (黄靖正)a, Patcharapong Treeviriyanupabb, Li Hong-Wei (李宏伟)a, Li Fang-Yi (李芳毅)a, Wang Chuan (王川)a, Yin Zhen-Qiang (银振强)a, Chen Wei (陈巍)a, Keattisak Sripimanwatb, Han Zhen-Fu (韩正甫)a
a Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China;
b Optical and Quantum Communications (OQC) Laboratory, National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Thailand
Abstract  Post-processing is indispensable in quantum key distribution (QKD), which is aimed at sharing secret keys between two distant parties. It mainly consists of key reconciliation and privacy amplification, which is used for sharing the same keys and for distilling unconditional secret keys. In this paper, we focus on speeding up the privacy amplification process by choosing a simple multiplicative universal class of hash functions. By constructing an optimal multiplication algorithm based on four basic multiplication algorithms, we give a fast software implementation of length-adaptive privacy amplification. “Length-adaptive” indicates that the implementation of privacy amplification automatically adapts to different lengths of input blocks. When the lengths of the input blocks are 1 Mbit and 10 Mbit, the speed of privacy amplification can be as fast as 14.86 Mbps and 10.88 Mbps, respectively. Thus, it is practical for GHz or even higher repetition frequency QKD systems.
Keywords:  length-adaptive privacy amplification      multiplication algorithms      quantum key distribution  
Received:  05 February 2014      Revised:  11 March 2014      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00200 and 2011CB921200) and the National Natural Science Foundation of China (Grant Nos. 60921091 and 61101137).
Corresponding Authors:  Yin Zhen-Qiang     E-mail:  yinzheqi@mail.ustc.edu.cn;kooky@mail.ustc.edu.cn

Cite this article: 

Zhang Chun-Mei (张春梅), Li Mo (李默), Huang Jing-Zheng (黄靖正), Patcharapong Treeviriyanupab, Li Hong-Wei (李宏伟), Li Fang-Yi (李芳毅), Wang Chuan (王川), Yin Zhen-Qiang (银振强), Chen Wei (陈巍), Keattisak Sripimanwat, Han Zhen-Fu (韩正甫) Fast implementation of length-adaptive privacy amplification in quantum key distribution 2014 Chin. Phys. B 23 090310

[1] Bennet C H and Brassard G 1984 Processings of IEEE International Conference on Computers, Systems and Singnal Processing p. 175
[2] Stucki D, Walenta N, Vannel F, Thew R T, Gisin N, Zbinden H, Gray S, Towery C R and Ten S 2009 New J. Phys. 11 075003
[3] Yuan Z L, Dixon A R, Dynes J F, Sharpe A W and Shields A J 2009 New J. Phys. 11 045019
[4] Li H W, Yin Z Q, Wang S, Bao W S, Guo G C and Han Z F 2011 Chin. Phys. B 20 100306
[5] Xu F X, Wang S, Han Z F and Guo G C 2010 Chin. Phys. B 19 100312
[6] Zhang Y, Wang S, Yin Z Q, Chen W, Liang W Y, Li H W and Guo G C 2012 Chin. Phys. B 21 100307
[7] Wang S, Chen W, Guo J F, Yin Z Q, Li H W, Guo G C and Han Z F 2012 Opt. Lett. 37 1008
[8] Hasegawa J, Hayashi M, Hiroshima T, Tanaka A and Tomita A 2007 arXiv:0705.3801 [astro-ph]
[9] Scarani V and Renner R 2008 Phys. Rev. Lett. 100 200501
[10] Tomamichel M, Lim C C W, Gisin N and Renner R 2012 Nat. Commun. 3 634
[11] Lucamarini M, Patel K A, Dynes J F, Fröhlich B, Sharpe A W, Dixon A R, Yuan Z L, Penty R V and Shields A J 2013 Opt. Express 21 24550
[12] Li H W, Zhao Y B, Yin Z Q, Wang S and Han Z F 2009 Opt. Commun. 282 4162
[13] Bennet C H, Brassard G and Robert J M 1988 Siam J. Comput. 17 210
[14] Bennet C H, Brassard G, Crepeau C and Maurer U M 1995 IEEE Trans. Inform. Theory 41 1915
[15] Carter J L and Wegman M N 1979 J. Comput. Syst. Sci. 18 143
[16] Wegman M N and Carter J L 1981 J. Comput. Syst. Sci. 22 265
[17] Assche G V 2006 Quantum Cryptography and Secret-key Distillation (1st edn.) (Cambridge: Cambridge University Press) pp. 104-107
[18] Eraerds P, Walenta N, Lergre M, Gisin N and Zbinden H 2010 New J. Phys. 12 063027
[19] Tanaka A, Fujiwara M, Yoshino K, Takahashi S, Nambu Y, Tomita A, Miki S, Yamashita T, Wang Z, Sasaki M and Tajima A 2012 IEEE J. Quantum Electron. 48 542
[20] Krawczyk H 1994 Proc. Adv. Cryptol.-CRYPTO 839 129
[21] Schönhage A and Strassen V 1971 Computing 7 281
[22] Sasaki M, Fujiwara M, Klaus W, et al. 2011 Opt. Express 19 10387
[23] Karatsuba A and Ofman Y 1962 Proceedings of the USSR Academy of Sciences, Vol. 145 p. 293
[24] Toom A L 1963 Soviet Mathematics 3 714
[25] Furer M 2009 Siam J. Comput. 39 979
[26] Gaudry P, Kruppa A and Zimmermann P 2007 Proceedings of ISSAC 2007 p. 167
[27] Bernstein D J 2001 Multidigit Multiplication for Mathematicians http://cr.yp.to/papers.html#m3
[28] Cormen T H, Leiserson C E, Rivest R L and Stein C 2009 Introduction to Algorithms (3rd edn.) (London: MIT Press) pp. 65-74
[29] Pacher C, Lechner G, Portmann C, Maurhart O and Peev M 2012 QCRYPT, September, 10-14, 2012 Singapore
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[7] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[13] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!