Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 057503    DOI: 10.1088/1674-1056/22/5/057503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Oscillation of coercivity between positive and negative in MnxGe1-x:H ferromagnetic semiconductor films

Qin Yu-Feng (秦羽丰)a b, Yan Shi-Shen (颜世申)a, Xiao Shu-Qin (萧淑琴)a, Li Qiang (李强)a, Dai Zheng-Kun (代正坤)a, Shen Ting-Ting (沈婷婷)a, Yang Ai-Chun (杨爱春)a, Pei Juan (裴娟)a, Kang Shi-Shou (康仕寿)a, Dai You-Yong (代由勇)a, Liu Guo-Lei (刘国磊)a, Chen Yan-Xue (陈延学)a, Mei Liang-Mo (梅良模)a
a School of Physics, National Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China;
b Department of Applied Physics, School of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
Abstract  Amorphous MnxGe1-x:H ferromagnetic semiconductor films prepared in mixed Ar with 20% H2 by magnetron co-sputtering show global ferromagnetism with positive coercivity at low temperatures. With increasing temperature, the coercivity of MnxGe1-x:H films first changes from positive to negative, and then back to positive again, which was not found in the corresponding MnxGe1-x and other ferromagnetic semiconductors before. For Mn0.4Ge0.6:H film, the inverted Hall loop is also observed at 30 K, which is in consistence with the negative coercivity. The negative coercivity is explained by the antiferromagnetic exchange coupling between the H-rich ferromagnetic regions separated by the H-poor non-ferromagnetic spacers. Hydrogenation is a useful method to tune the magnetic properties of MnxGe1-x films for the application in spintronics.
Keywords:  magnetic semiconductor      hydrogenation      MnxGe1-x      antiferromagnetic coupling  
Received:  18 November 2012      Revised:  06 January 2013      Accepted manuscript online: 
PACS:  75.50.Pp (Magnetic semiconductors)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
  75.50.Ee (Antiferromagnetics)  
  73.61.Jc (Amorphous semiconductors; glasses)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11204164), the National Natural Science Foundation of China (Grant No. 11174184), the National Basic Research Program of China (Grants Nos. 2013CB922303 and 2009CB929202), and the National Funds for Distinguished Young Scholars of China (Grant No. 51125004).
Corresponding Authors:  Dai You-Yong     E-mail:  yydai@sdu.edu.cn

Cite this article: 

Qin Yu-Feng (秦羽丰), Yan Shi-Shen (颜世申), Xiao Shu-Qin (萧淑琴), Li Qiang (李强), Dai Zheng-Kun (代正坤), Shen Ting-Ting (沈婷婷), Yang Ai-Chun (杨爱春), Pei Juan (裴娟), Kang Shi-Shou (康仕寿), Dai You-Yong (代由勇), Liu Guo-Lei (刘国磊), Chen Yan-Xue (陈延学), Mei Liang-Mo (梅良模) Oscillation of coercivity between positive and negative in MnxGe1-x:H ferromagnetic semiconductor films 2013 Chin. Phys. B 22 057503

[1] Teng X Y, Yu W, Yang L H, Ao Q Y, Zhang L, Xu H J, Liu C C and Fu G S 2007 Chin. Phys. Lett. 24 1073
[2] Cao Q, Deng J X, Liu G L, Chen Y X, Yan S S and Mei L M 2007 Chin. Phys. Lett. 24 2951
[3] Wen Q Y, Zhang H W, Song Y Q, Yang Q H and Xiao J Q 2007 Chin. Phys. Lett. 24 2955
[4] Peng L, Zhang H W, Wen Q Y, Song Y Q, Su H and Xiao J Q 2008 Chin. Phys. Lett. 25 1438
[5] Li T J, Li G P, Gao X X and Chen J S 2010 Chin. Phys. Lett. 27 87501
[6] Ohno H, Sher A, Sukura F M, Oiwa A, Eudo A, Katsumoto S and Iye Y 1996 Appl. Phys. Lett. 69 363
[7] Ohno H 1998 Science 281 951
[8] Xing P F, Chen Y X, Liu G L, Yan S S, Mei L M, Wang K, Han X D and Zhang Z 2008 Appl. Phys. Lett. 92 022513
[9] Park Y D, Hanbicki A T, Erwin S C, Hellberg C S, Sullivan J M, Mattson J E, Ambrose T F, Wilson A, Spanos G and Jonker B T 2002 Science. 295 651
[10] Chen Y X, Yan S S, Fang Y, Tian Y F, Xiao S Q, Liu G L, Liu Y H and Mei L M 2007 Appl. Phys. Lett. 90 052508
[11] Yada S, Sugahara S and Tanaka M 2008 Appl. Phys. Lett. 93 193108
[12] Liu S H, Hsu H S, Lin C R, Lue C S and Huang J C A 2007 Appl. Phys. Lett. 90 222505
[13] Yao J H, Li S C, Lan M D and Chin T S 2009 Appl. Phys. Lett. 94 072507
[14] Goennenwein S T B, Wassner T A, Huebl H, Brandt M S, Philipp J B, Opel M, Gross R, Koeder A, Schoch W and Waag A 2004 Phys. Rev. Lett. 92 227202
[15] Liu X C, Lin Y B, Wang J F, Lu Z H, Lu Z L, Xu J P, Lv L Y, Zhang F M and Du Y W 2007 J. Appl. Phys. 102 033902
[16] Yao X X, Yan S S, Hu S J, Lin X L, Han C, Chen Y X, Liu G L and Mei L M 2008 New J. Phys. 10 055015
[17] Wu Y, Stephen J T, Han D X, Rutland J M, Crandall R S and Mahan A H 1996 Phys. Rev. Lett. 77 2049
[18] Sheng S R, Liao X B, Kong G L and Han H X 1998 Appl. Phys. Lett. 73 336
[19] Muto S, Takeda S and Hirata M 1994 Mater. Sci. Forum 143-147 897
[20] Hiller M, Lavrov E V and Weber J 2005 Phys. Rev. B 71 045208
[21] Qin Y F, Yan S S, Xiao S Q, Li Q, Dai Z K, Shen T T, Kang S S, Dai Y Y, Liu G L, Chen Y X and Mei L M 2011 J. Appl. Phys. 109 083906
[22] Long J G, Zhai Y, Chen J, Du J, Pan M H, Lu M, Hu A and Zhai H R 2001 J. Magn. Magn. Mater. 226 1823
[23] Kim D Y, Kim C G, Kim C O, Yoon S S, Naka M, Tsunoda M and Takanashi M 2006 J. Magn. Magn. Mater. 304 e356
[24] Demirtas S, Hossu M R, Arikan M, Koymen A R and Salamon M B 2007 Phys. Rev. B 76 214430
[25] Ha N D, Yoon T S, Gan'shina E, Phan M H, Kim C G and Kim C O 2005 J. Magn. Magn. Mater. 295 126
[26] Lutes O S, Holmen J O, Kooyer R L and Aadland O S 1977 IEEE Trans. Magn. MAG-13 1615
[27] Yan X and Xu Y 1996 J. Appl. Phys. 79 6013
[28] Tho L V, Kim C G and Kim C O 2008 J. Appl. Phys. 103 07B906
[29] Deng J X, Yan S S, Mei L M, Liu J P, Altuncevahir B, Chakka V, Wang Y, Zhang Z, Sun X C, Lian J and Sun K 2009 Chin. Phys. Lett. 26 027502
[30] Bhan M K, Malhotra L K and Kashyap S C 1989 J. Appl. Phys. 65 241
[31] Mackenzie K D, Eggert J R, Leopold D J, Li Y M, Lin S and Paul W 1985 Phys. Rev. B. 31 2198
[32] Liu Z Y and Adenwalla S 2003 Phys. Rev. Lett. 91 037207
[1] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[2] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[3] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[4] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[5] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[6] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[7] Microstructure and ferromagnetism of heavily Mn doped SiGe thin flims
Huanming Wang(王焕明), Sen Sun(孙森), Jiayin Xu(徐家胤), Xiaowei Lv(吕晓伟), Yuan Wang(汪渊), Yong Peng(彭勇), Xi Zhang(张析), Gang Xiang(向钢). Chin. Phys. B, 2020, 29(5): 057504.
[8] Improving the performance of crystalline Si solar cell by high-pressure hydrogenation
Xi-Yuan Dai(戴希远), Yu-Chen Zhang(张宇宸), Liang-Xin Wang(王亮兴), Fei Hu(胡斐), Zhi-Yuan Yu(于志远), Shuai Li(李帅), Shu-Jie Li(李树杰), Xin-Ju Yang(杨新菊), and Ming Lu(陆明). Chin. Phys. B, 2020, 29(11): 118801.
[9] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
[10] Effects of chemical pressure on diluted magnetic semiconductor (Ba,K)(Zn,Mn)2As2
Y Peng(彭毅), S Yu(于爽), G Q Zhao(赵国强), W M Li(李文敏), J F Zhao(赵建发), L P Cao(曹立朋), X C Wang(望贤成), Q Q Liu(刘清青), S J Zhang(张思佳), R Z Yu(于润泽), Z Deng(邓正), X H Zhu(朱小红), C Q Jin(靳常青). Chin. Phys. B, 2019, 28(5): 057501.
[11] Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors
Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2018, 27(9): 097502.
[12] Magnetic interactions in a proposed diluted magnetic semiconductor (Ba1-xKx)(Zn1-yMny)2P2
Huan-Cheng Yang(杨焕成), Kai Liu(刘 凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2018, 27(6): 067103.
[13] Influence of spin-orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls
Lian Liu(刘恋), Wen-Xiang Chen(陈文祥), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2018, 27(4): 047201.
[14] Computational mechanistic investigation of radiation damage of adenine induced by hydroxyl radicals
Rongri Tan(谈荣日), Huixuan Liu(刘慧宣), Damao Xun(寻大毛), Wenjun Zong(宗文军). Chin. Phys. B, 2018, 27(2): 027102.
[15] Effects of edge hydrogenation and Si doping on spin-dependent electronic transport properties of armchair boron-phosphorous nanoribbons
Hong Zhao(赵虹), Dan-Dan Peng(彭丹丹), Jun He(何军), Xin-Mei Li(李新梅), Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2018, 27(10): 108504.
No Suggested Reading articles found!