Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 047301    DOI: 10.1088/1674-1056/26/4/047301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Decoupling technique of patch antenna arrays with shared substrate by suppressing near-field magnetic coupling using magnetic metamaterials

Zhaotang Liu(柳兆堂)1, Jiafu Wang(王甲富)1, Shaobo Qu(屈绍波)1, Jieqiu Zhang(张介秋)1, Hua Ma(马华)1, Zhuo Xu(徐卓)2, Anxue Zhang(张安学)3
1 College of Science, Air Force Engineering University, Xi'an 710051, China;
2 Key Laboratory of Electronic Materials Research Laboratory of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China;
3 School of Electronics and Information, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  In this paper, we propose the decoupling technique of patch antenna array by suppressing near-field magnetic coupling (NFMC) using magnetic metamaterials. To this end, a highly-integrated magnetic metamaterials, the substrate-integrated split-ring resonator (SI-SRR), is firstly proposed to achieve negative permeability at the antenna operating frequency. By integrating SI-SRR in between two closely spaced antennas, magnetic fields are blocked in the shared substrate due to negative permeability of SI-SRR, reducing NFMC between the two antennas. To verify the technique, a prototype was fabricated and measured. The measured results demonstrated that the isolation can be enhanced by more than 17 dB even when the gap between the two patch antennas is only about 0.067λ. Due to high integration, this technique provides an effective alternative to high-isolation antenna array.
Keywords:  antenna isolation      antenna array      near-field magnetic coupling      magnetic metamaterials      negative permeability  
Received:  07 May 2016      Revised:  13 January 2017      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  78.20.Bh (Theory, models, and numerical simulation)  
  84.40.Ba (Antennas: theory, components and accessories)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant Nos. 61331005, 61471388, 61501503, 61501502, 61501497, 51575524, 61302023, and 11304393) and the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2015JM6300 and 2015JM6277).
Corresponding Authors:  Jiafu Wang, Shaobo Qu     E-mail:  wangjiafu1981@126.com;qushaobo@mail.xjtu.edu.cn

Cite this article: 

Zhaotang Liu(柳兆堂), Jiafu Wang(王甲富), Shaobo Qu(屈绍波), Jieqiu Zhang(张介秋), Hua Ma(马华), Zhuo Xu(徐卓), Anxue Zhang(张安学) Decoupling technique of patch antenna arrays with shared substrate by suppressing near-field magnetic coupling using magnetic metamaterials 2017 Chin. Phys. B 26 047301

[1] Foschini G J 1996 Bell Labs Tech. J. 1 4159
[2] Wallace J W and Jensen M A 2003 IEEE Trans. Wire. Commun. 2 335343
[3] Debatosh Guha 2011 Microstrip and Printed Antennas: new trends, techniques, and applications (New York: John Wiley & Sons)
[4] Lu Y F and Lin Y C 2013 IEEE Microw. Anten. Propag. 7 754759
[5] Yang L, Fan M, Chen F, She J and Feng Z 2005 IEEE Trans. Microw. Theory Tech. 53 183190
[6] Lai X Z and Xie Z M 2013 IEEE Antennas Wirelss. Propag. Lett. 12 16301633
[7] Mohammad S Sharawil and Ahmed B Numanl 2013 Prog. Electrom. Res. 134 247266
[8] Chiu C Y, Member, Cheng C H and Murch R D 2007 IEEE Trans. Anten. Propag. 55 1735
[9] Xu H X and Wang G M 2013 IEEE Trans. Magn. 49 1526
[10] Wu B I, Chen H S and Kong J A 2007 J. Appl. Phys. 101 114913
[11] Dadashzadeh G and Dadgarpour A 2011 IEEE Microw. Anten. Propag. 5 113125
[12] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microw. Tech. 47 2075
[13] Wang J F and Qu S B 2010 Phys. Rev. Lett. 81 036601
[14] Wang J S and Qu S B 2008 IEEE Trans. Anten. Propag. 56 20182022
[15] Atsushi Ishikawa and Takuo Tanaka 2006 Opt. Commun. 258 300305
[16] Bhattacharyya A K and Garg R 1985 IEE Proc. pt. H 132 9398
[17] Lo Y T, Solomon D and Richards W F 1979 IEEE Trans. Anten. Propag. 27 137145
[1] Ultra-wideband low radar cross-section metasurface and its application on waveguide slot antenna array
Li-Li Cong(丛丽丽), Xiang-Yu Cao(曹祥玉), Tao Song(宋涛), Jun Gao(高军). Chin. Phys. B, 2018, 27(11): 114101.
[2] Design of multi-band metasurface antenna array with low RCS performance
Si-Ming Wang(王思铭), Jun Gao(高军), Xiang-Yu Cao(曹祥玉), Yue-Jun Zheng(郑月军), Tong Li(李桐), Jun-Xiang Lan(兰俊祥), Liao-Ri Ji-Di(吉地辽日). Chin. Phys. B, 2018, 27(10): 104102.
[3] Electromagnetic coupling reduction in dual-band microstrip antenna array using ultra-compact single-negative electric metamaterials for MIMO application
Xiao-Long Fu(付孝龙), Guo-Cheng Wu(吴国成), Wei-Xiong Bai(白渭雄), Guang-Ming Wang(王光明), Jian-Gang Liang(梁建刚). Chin. Phys. B, 2017, 26(2): 024101.
[4] Magnetic interaction in the metamaterial/magnet system
M. K. Alqadi, F. Y. Alzoubi. Chin. Phys. B, 2014, 23(8): 087506.
[5] Performance of superconducting nanowire single-photon detector with the fan coupling antenna array
Wang Yu-Jue (王玉珏), Ding Tian (丁天), Ma Hai-Qiang (马海强), Jiao Rong-Zhen (焦荣珍). Chin. Phys. B, 2014, 23(6): 060308.
[6] A double constrained robust capon beamforming based imaging method for early breast cancer detection
Xiao Xia (肖夏), Xu Li (徐立), Li Qin-Wei (李钦伟). Chin. Phys. B, 2013, 22(9): 094101.
[7] Effective permittivity and permeability of one-dimensional dielectric photonic crystal within a band gap
Guo Ji-Yong(郭继勇), Chen Hong(陈鸿), Li Hong-Qiang(李宏强), and Zhang Ye-Wen(张冶文) . Chin. Phys. B, 2008, 17(7): 2544-2552.
[8] Simultaneous negative permittivity and permeability in a coherent atomic vapour
Shen Jian-Qi(沈建其). Chin. Phys. B, 2007, 16(7): 1976-1985.
[9] Theoretical analysis of ion cyclotron range of frequency antenna array for HT-7U
Zhang Xin-Jun (张新军), Qin Cheng-Ming (秦成明), Zhao Yan-Ping (赵燕平). Chin. Phys. B, 2005, 14(11): 2251-2255.
No Suggested Reading articles found!