Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 083101    DOI: 10.1088/1674-1056/23/8/083101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Influence of chirality on the thermal conductivity of single-walled carbon nanotubes

Feng Ya (冯雅)a b, Zhu Jie (祝捷)a, Tang Da-Wei (唐大伟)a
a Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The influence of chirality on the thermal conductivity of single-walled carbon nanotubes (SWNTs) is discussed in this paper, using a non-equilibrium molecular dynamics (NEMD) method. The tube lengths of the SWNTs studied here are 20, 50, and 100 nm, respectively, and at each length the relationship between chiral angle and thermal conductivity of a SWNT is revealed. We find that if the tube length is relatively short, the influence of chirality on the thermal conductivity of a SWNT is more obvious and that a SWNT with a larger chiral angle has a greater thermal conductivity. Moreover, the thermal conductivity of a zigzag SWNT is smaller than that of an armchair one. As the tube length becomes longer, the thermal conductivity increases while the influence of chirality on the thermal conductivity decreases.
Keywords:  single-walled carbon nanotube      thermal conductivity      chiral angle      molecular dynamics simulation  
Received:  13 October 2013      Revised:  24 December 2013      Accepted manuscript online: 
PACS:  31.15.at (Molecule transport characteristics; molecular dynamics; electronic structure of polymers)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  68.70.+w (Whiskers and dendrites (growth, structure, and nonelectronic properties))  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB933200) and the National Natural Science Foundation of China (Grant No. 51206167).
Corresponding Authors:  Zhu Jie     E-mail:  zhujie@iet.cn

Cite this article: 

Feng Ya (冯雅), Zhu Jie (祝捷), Tang Da-Wei (唐大伟) Influence of chirality on the thermal conductivity of single-walled carbon nanotubes 2014 Chin. Phys. B 23 083101

[1] Iijima S 1991 Nature 354 56
[2] Baughman R H, Zakhidov A A and Heer W A 2002 Science 297 787
[3] Berber S, Kwon Y K and Tomanek D 2000 Phys. Rev. Lett. 84 4613
[4] Osman M A and Srivastava D 2001 Nanotechnology 12 21
[5] Moreland J F 2004 Microscale Thermophysical Engineering 8 61
[6] Cao J, Yan X, Xiao Y and Ding J 2004 Phys. Rev. B 69 073407
[7] Bao W X and Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese)
[8] Hu L J, Liu J, Liu Z, Qiu C Y, Zhou H Q and Sun L F 2011 Chin. Phys. B 20 096101
[9] Maruyama S 2002 Physica B: Condens. Matter 323 193
[10] Mingo N and Broido D 2005 Nano Lett. 5 1221
[11] Mingo N and Broido D 2005 Phys. Rev. Lett. 95 096105
[12] Wang Z L, Liang J G, Tang D W and Zhu Y T 2008 Acta Phys. Sin. 57 3391 (in Chinese)
[13] Hou Q W, Cao B Y and Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese)
[14] Li W, Feng Y, Chen Y and Zhang X 2012 Acta Phys. Sin. 61 136102 (in Chinese)
[15] Fan H, Zhang K and Yuen M M 2006 International Conference on Electronic Materials and Packaging, December 11-14, 2006, Kowloon, China, p. 1
[16] Che J, Cagin T and Goddard Ⅲ W A 2000 Nanotechnology 11 65
[17] Shiomi J and Maruyama S 2007 Thermal Engineering Summer Heat Transfer Conference, July 8-12, 2007, Vancouver, British Columbia, Canada, p. 32734
[18] Maiti A, Svizhenko A and Anantram M 2002 Phys. Rev. Lett. 88 126805
[19] Grujicic M, Cao G and Gersten B 2004 Mater. Sci. Eng. B 107 204
[20] Zhang W, Zhu Z, Wang F, Wang T, Sun L and Wang Z 2004 Nanotechnology 15 936
[21] Falat T, Platek B and Felba J 2009 Electronics Packaging Technology Conference, December 9-11, 2009, Singpore, p. 636
[22] Stuart S J, Tutein A B and Harrison J A 2000 J. Chem. Phys. 112 6472
[23] Shiomi J and Maruyama S 2008 Jpn. J. Appl. Phys. Part 1: Regular Papers and Short Notes 47 2005
[24] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 J. Phys.: Condens. Matter 14 783
[25] Jund P and Jullien R 1999 Phys. Rev. B 59 13707
[26] Plimpton S 1995 J. Comput. Phys. 117 1
[27] Ong Z Y and Pop E 2010 Phys. Rev. B 81 155408
[28] Lukes J R and Zhong H 2007 J. Heat Transfer 129 705
[29] Brenner D W 1990 Phys. Rev. B 42 9458
[30] Li X, Maute K, Dunn M L and Yang R 2010 Phys. Rev. B 81 245318
[31] Zhang G and Li B 2005 J. Chem. Phys. 123 114714
[32] Chen J, Zhang G and Li B 2011 J. Chem. Phys. 135 104508
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[7] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[15] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
No Suggested Reading articles found!