|
|
Semi-classical explanation for the dissociation control of H2+ |
Jia Zheng-Mao (贾正茂), Zeng Zhi-Nan (曾志男), Li Ru-Xin (李儒新), Xu Zhi-Zhan (徐至展) |
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China |
|
|
Abstract A semi-classical model is utilized to explain the dissociation control of the hydrogen molecular ion (H2+). By analyzing the curve of the dissociation asymmetry parameter as a function of the time delay between the exciting and steering pulses, we find that the dissociation control is dependent not only on the peak intensity and direction of the electric field of the steering pulse, but also on the peak intensity of the exciting pulse.
|
Received: 08 November 2013
Revised: 18 February 2014
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
33.80.Rv
|
(Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11127901, 60921004, 11134010, 11222439, 11227902, and 61108012) and the National Key Basic Research Program of China (Grant No. 2011CB808103). |
Corresponding Authors:
Zeng Zhi-Nan
E-mail: zhinan_zeng@mail.siom.ac.cn
|
Cite this article:
Jia Zheng-Mao (贾正茂), Zeng Zhi-Nan (曾志男), Li Ru-Xin (李儒新), Xu Zhi-Zhan (徐至展) Semi-classical explanation for the dissociation control of H2+ 2014 Chin. Phys. B 23 083201
|
[1] |
Brixner T and Gerber G 2003 Chem. Phys. Chem. 4 418
|
[2] |
Lan P, Lu P, Cao W, Li Y and Wang X 2007 Phys. Rev. A 76 011402
|
[3] |
González Castrillo A, Palacios A, Bachau H and Martín F 2012 Phys. Rev. Lett. 108 063009
|
[4] |
Zewail A H 2000 J. Phys. Chem. A 104 5660
|
[5] |
Babrec T and Krausz F 2000 Rev. Mod. Phys. 72 545
|
[6] |
Lindner F, Schätzel M G, Walther H, Baltuška A, Goulielmakis E, Krausz F, Milošević D B, Bauer D, Becker W and Paulus G G 2005 Phys. Rev. Lett. 95 040401
|
[7] |
Roudnev V, Esry B D and Ben Itzhak I 2004 Phys. Rev. Lett. 93 163601
|
[8] |
Kling M F, Siedschlag Ch, Verhoef A J, Khan J I, Schultze M, Uphues Th, Ni Y, Uiberacker M, Drescher M, Krausz F and Vrakking M J J 2006 Science 312 246
|
[9] |
Chelkowski S, Yudin G L and Bandrauk A D 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S409
|
[10] |
Znakovskaya I, von den Hoff P, Marcus G, Zherebtsov S, Bergues B, Gu X, Deng Y, Vrakking M J J, Kienberger R, Krausz F, de Vivie-Riedle R and Kling M F 2012 Phys. Rev. Lett. 108 063002
|
[11] |
Geppert D, vonden Hoff P and de Vivie-Riedle R 2008 J. Phys. B: At. Mol. Opt. Phys. 41 074006
|
[12] |
Roudnev V and Esry B D 2007 Phys. Rev. Lett. 99 220406
|
[13] |
McKenna J, Anis F, Sayler A M, Gaire B, Nora G Johnson, Parke E, Esry K D, Carnes B D and Ben Itzhak I 2012 Phys. Rev. A 85 023405
|
[14] |
Fischer Bettina, Kremer Manuel, Pfeifer Thomas, Feuerstein Bernold, Vandana Sharma, Uwe Thumm, Claus Dieter Schröter, Robert Moshammer and Joachim Ullrich1 2010 Phys. Rev. Lett. 105 223001
|
[15] |
He F 2012 Phys. Rev. A 86 063415
|
[16] |
Kling M F, Siedschlag Ch, Znakovskaya I, Verhoef A J, Zherebtsov S, Krausz F, Lezius M and Vrakking M J J 2008 Mol. Phys. 106 455
|
[17] |
Hirori H, Doi A, Blanchard F and Tanaka K 2011 Appl. Phys. Lett. 98 091106
|
[18] |
Alexander Sell, Alfred Leitenstorfer and Rupert Huber 2008 Opt. Lett. 33 2767
|
[19] |
Christoph P Hauri, Clemens Ruchert, Carlo Vicario and Fernando Ardana 2011 Appl. Phys. Lett. 99 161116
|
[20] |
Xie X, Dai J M and Zhang X C 2006 Phys. Rev. Lett. 96 075005
|
[21] |
Bai Y, Song L W, Xu R J, Li C, Peng L, Zeng Z N, Zhang Z X, Lu H H, Li R X and Xu Z Z 2012 Phys. Rev. Lett. 108 255004
|
[22] |
Wu J, Tong Y Q, Li M, Pan H F and Zeng H P 2010 Phys. Rev. A 82 053416
|
[23] |
Jia Z G, Zeng Z N, Li R X, Xu Z Z and Deng Y P Phys. Rev. A 89 023419
|
[24] |
Zheng Y H, Zeng Z N, Li R X and Xu Z Z 2012 Phys. Rev. A 85 023410
|
[25] |
Chelkowski Szczepan, André D Bandrauk, André Staudte and Corkum Paul B 2007 Phys. Rev. A 76 013405
|
[26] |
Wang Y S and Xu Z Z 2000 Chin. Phys. Lett. 17 491
|
[27] |
Chen C Z, Zhou X X and Cao W J 2011 Acta Phys. Sin. 60 054210 (in Chinese)
|
[28] |
Chen J G, Yu X P, He L J, Xu Y Y and Yang Y J 2011 Acta Phys. Sin. 60 053206 (in Chinese)
|
[29] |
Zeng Z N, Li R X, Yu W and Xu Z Z 2002 Chin. Phys. Lett. 19 1112
|
[30] |
Zeng Z N, Li R X, Yu W and Xu Z Z 2003 Phys. Rev. A 67 013815
|
[31] |
Liu K L, Hong W Y, Zhang Q B and Lu P X 2011 Opt. Express 19 26359
|
[32] |
He F, Ruiz Camilo and Becker Andreas 2007 Phys. Rev. Lett. 99 083002
|
[33] |
Fleischer Sharly, Zhou Y, Robert W Field and Nelson Keith A 2011 Phys. Rev. Lett. 107 163603
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|