Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 080206    DOI: 10.1088/1674-1056/23/8/080206
GENERAL Prev   Next  

A feedback control method for the stabilization of a nonlinear diffusion system on a graph

Yu Xin (于欣)a, Xu Chao (许超)b, Lin Qun (林群)c
a Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China;
b The State Key Laboratory of Industrial Control Technology and Institute of Cyber-Systems & Control, Zhejiang University, Hangzhou 310027, China;
c Department of Mathematics and Statistics, Curtin University, 6845, Australia
Abstract  In this paper, we consider the internal stabilization problems of FitzHugh-Nagumo (FHN) systems on the locally finite connected weighted graphs, which describe the process of signal transmission across axons in neurobiology. We will establish the proper condition on the weighted Dirichlet-Laplace operator on a graph such that the nonlinear FHN system can be stabilized exponentially and globally only using internal actuation over a sub-domain with a linear feedback form.
Keywords:  FitzHugh-Nagumo system      graph      stabilization      internal controller  
Received:  28 October 2013      Revised:  27 November 2013      Accepted manuscript online: 
PACS:  02.30.Yy (Control theory)  
  89.75.-k (Complex systems)  
  87.10.Ed (Ordinary differential equations (ODE), partial differential equations (PDE), integrodifferential models)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61374096, 61104048, and 11231007) and the Natural Science Foundation of Zhejiang Province, China (Grant No. Y6110751).
Corresponding Authors:  Xu Chao     E-mail:  cxu@zju.edu.cn

Cite this article: 

Yu Xin (于欣), Xu Chao (许超), Lin Qun (林群) A feedback control method for the stabilization of a nonlinear diffusion system on a graph 2014 Chin. Phys. B 23 080206

[1] Grabowski A and Kosiński R A 2005 Acta Physica Polonica B 36 1579
[2] Xu X J, Peng H O, Wang X M and Wang Y H 2006 Physica A: Statistical Mechanics and Its Applications 367 525
[3] Yang R, Wang B H, Ren J, Bai W J, Shi Z W, Wang W X and Zhou T 2007 Phys. Lett. A 364 189
[4] Mesbahi M and Egerstedt M 2010 Graph Theoretic Methods in Multiagent Networks (Princeton: Princeton University Press)
[5] Rahmani A, Ji M, Mesbahi M and Egerstedt M 2009 SIAM J. Control Opt. 48 162
[6] Bell J 1981 Math. Biosci. 54 181
[7] Jones C K R T 1984 Tran. Am. Math. Soc. 286 431
[8] Anderson A R A and Sleeman B D 1995 Int. J. Bifur. Chaos Appl. Sci. Eng. 5 63
[9] Krupa M, Sandstede B and Szmolyan P 1997 J. Differ. Equ. 133 49
[10] Marion M 1989 SIAM J. Math. Anal. 20 816
[11] Prizzi M 2003 Discrete Contin. Dynam. Systems 9 281
[12] Rodriguez-Bernal A and Wang B 2000 J. Math. Anal. Appl. 252 790
[13] Shao Z 1998 J. Differ. Equ. 44 1
[14] Van Vleck E and Wang B 2005 Physica D 212 317
[15] Elmer C E and Van Vleck E 2005 SIAM J. Appl. Math. 65 1153
[16] Barbu V 2003 ESAIM Control Optim. Calc. Var. 9 197
[17] Barbu V and Wang G S 2003 J. Math. Anal. Appl. 285 387
[18] Wang G S and Xu Y S 2014 J. Funct. Anal. 266 5126
[19] Barbu V, Lasiecka I and Triggiani R 2006 Nonlinear Analysis 64 2704
[20] Lasiecka I and Triggiani R 2000 "Control Theory for Partial Differential Equations: Continuous and Approximation Theories" (Cambridge: Cambridge University Press)
[21] Liu W J 2009 Elementary Feedback Sabilization of the Linear Reaction-Convection-Diffusion Equation and the Wave Equation (Berlin: Springer)
[22] Raymond J P 2006 SIAM J. Control Optim. 45 790
[23] Boukhobza T and Hamelin F 2007 Automatica 43 1968
[24] Liu Y Y, Slotine J J and Barabási A L 2011 Nature 473 167
[25] Lombardi A and Hörnquist M 2007 Phys. Rev. E 75 056110
[26] Chung F R K 1997 Spectral Graph Theory (Providence: American Mathematical Society)
[27] Grigoryan A 2009 Analysis on Graphs, Lecture Notes in Bielefeld (Germany)
[28] Isaacson E and Keller H B 1966 Analysis of Numerical Methods (New York: John Wiley & Sons)
[29] Zuazua E 2002 Discrete and Continuous Dynamical Systems 8 469
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[3] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[4] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[5] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[6] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[7] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[8] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[9] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[10] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[11] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[12] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[13] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[14] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[15] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
No Suggested Reading articles found!