Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 077103    DOI: 10.1088/1674-1056/23/7/077103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Hybrid density functional studies of cadmium vacancy in CdTe

Xu Run (徐闰)a b, Xu Hai-Tao (徐海涛)a, Tang Min-Yan (汤敏燕)a, Wang Lin-Jun (王林军)a
a School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China;
b State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
Abstract  The intrinsic defect of cadmium vacancy (VCd) in cadmium telluride (CdTe) has been studied by first-principles calculations using potentials with both the screened hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE) approximation and the generalized gradient approximation of the Perdew-Burke-Ernzerhof form (PBE-GGA). Both results show that the Td structure of the VCd defect for different charges is the most stable structure as compared with the distorted C3v structure with one hole localized at one of the four nearest Te atoms. This indicates that the John-Teller distortion (C3v) structure may be unstable in bulk CdTe crystal. The reason likely lies in the delocalized resonance nature of the t2 state of the Vm Cd defect. Moreover, the formation energy obtained by the HSE method is about 0.6-0.8 eV larger than that obtained by the PBE method. The transition levels calculated by the PBE method and the HSE method are similar and well consistent with the experimental results.
Keywords:  defect levels      semiconductor compound      density functional theory  
Received:  09 October 2013      Revised:  14 January 2014      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.55.-i (Impurity and defect levels)  
  71.20.Nr (Semiconductor compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. A050506), the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 12ZZ096), the Shanghai Leading Academic Disciplines, China (Grant No. S30107), and the Science and Technology Commission of Shanghai, China (Grant No. 11530500200).
Corresponding Authors:  Xu Run     E-mail:  runxu@staff.shu.edu.cn
About author:  71.15.Mb; 71.55.-i; 71.20.Nr

Cite this article: 

Xu Run (徐闰), Xu Hai-Tao (徐海涛), Tang Min-Yan (汤敏燕), Wang Lin-Jun (王林军) Hybrid density functional studies of cadmium vacancy in CdTe 2014 Chin. Phys. B 23 077103

[1] Szeles C 2004 IEEE Trans. Nucl. Sci. 51 1242
[2] Berding M A 1999 Phys. Rev. B 60 8943
[3] Marfaing Y 1996 J. Cryst. Growth 161 205
[4] Castaldini A, Cavallini A, Fraboni B, Fernandez P and Piqueras J 1998 J. Appl. Phys. 83 2121.
[5] Reislöhner U, Grillenberger J and Witthuhn W 1998 J. Cryst. Growth 1160
[6] Chern S S, Vydyanath H R and Krögner F A 1975 J. Solid State Chem. 14 33
[7] Szeles C, Shan Y Y, Lynn K G, Moodenbaugh A R and Eissler E E 1997 Phys. Rev. B 55 6945
[8] Krsmanovic N, Lynn K G, Weber M H, Tjossem R, Gessmann T, Szeles C, Eissler E, Flint J P and Glass H L 2000 Phys. Rev. B 62 R16279
[9] Carvalho A, Tagantsev A K, Öberg S, Briddon P R and Setter N 2010 Phys. Rev. B 81 075215
[10] Emanuelsson P, Omling P, Meyer B K, Wienecke M and Schenk M 1993 Phys. Rev. B 47 15578
[11] Meyer B K and Hofmann D M 2008 Appl. Phys. A 61 213
[12] Li M, Zhang J Y, Zhang Y and Wang T M 2012 Chin. Phys. B 21 087301
[13] Jakubas P and Boguslawski P 2008 Phys. Rev. B 77 214104
[14] Lany S, Ostheimer V, Wolf H and Wichert T 2001 Physica B 308-310 958
[15] Deák P, Gali A, Aradi B and Frauenheim T 2011 Phys. Status Solidi B 248 790
[16] Heyd J and Scuseria G E 2004 J. Chem. Phys. 120 7274
[17] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[18] Janoti A and van de Walle C G 2007 Phys. Rev. B 76 165202
[19] Gerstmann U, Deák P, Rurali R, Aradi B, Frauenheim T and Overhof H 2003 Physica B 340-342 190
[20] Bezryadina A, France C, Graham R, Yang L, Carter S A and Alers G B 2012 Appl. Phys. Lett. 100 013508
[21] Heyd J, Peralta J E, Scuseria G E and Martin R L 2005 J. Chem. Phys. 123 174101
[22] Lalitha S, Karazhanov S Z, Ravindran P, Senthilarasu S, Sathyamoorthy R and Janabergenov J 2007 Physica B 387 227
[23] Duan H, Chen X, Zhou X, Huang Y, Sun L and Lu W 2007 Phys. Rev. B 76 035209
[24] Rössler U 1999 Ⅱ -VI and I-VⅡ Compounds; Semimagnetic Compounds (Berlin: Springer)
[25] Wei S H, Ferreira G and Zunger A 1990 Phys. Rev. B 41 8240
[26] Henderson T M, Paier J and Scuseria G E 2011 Phys. Status Solidi B 248 767
[27] Van de Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851
[28] Chang Y C, James R B and Davenport J W 2006 Phys. Rev. B 73 035211
[29] Du M H, Takenaka H and Singh D J 2008 J. Appl. Phys. 104 093521
[30] Janotti A, Varley J B, Rinke P, Umezawa N, Kresse G and van de Walle C G 2010 Phys. Rev. B 81 085212
[31] Pei Y and Wu H B 2013 Chin. Phys. B 22 057303
[32] Illgner M and Overhof H 1996 Phys. Rev. B 54 2505
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[15] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
No Suggested Reading articles found!