Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 077102    DOI: 10.1088/1674-1056/23/7/077102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of structural, electronic and optical properties of ZnF2

Wu Jian-Bang (吴建邦), Cheng Xin-Lu (程新路), Zhang Hong (张红), Xiong Zheng-Wei (熊政伟)
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract  The structural, electronic, and optical properties of rutile-, CaCl2-, and PdF2-ZnF2 are calculated by the plane-wave pseudopotential method within the density functional theory. The calculated equilibrium lattice constants are in reasonable agreement with the available experimental and other calculated results. The band structures show that the rutile-, CaCl2-, and PdF2-ZnF2 are all direct band insulator. The band gaps are 3.63, 3.62, and 3.36 eV, respectively. The contribution of the different bands was analyzed by the density of states. The Mulliken population analysis is performed. A mixture of covalent and weak ionic chemical bonding exists in ZnF2. Furthermore, in order to understand the optical properties of ZnF2, the dielectric function, absorption coefficient, refractive index, electronic energy loss spectroscopy, and optical reflectivity are also performed in the energy range from 0 to 30 eV. It is found that the main absorption parts locate in the UV region for ZnF2. This is the first quantitative theoretical prediction of the electronic and optical properties of ZnF2 compound, and it still awaits experimental confirmation.
Keywords:  density functional theory      ZnF2      electronic properties      optical properties  
Received:  01 January 2014      Revised:  02 April 2014      Accepted manuscript online: 
PACS:  71.15.Ap (Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.22.+i (Electronic structure of liquid metals and semiconductors and their Alloys)  
  78.66.-w (Optical properties of specific thin films)  
Corresponding Authors:  Cheng Xin-Lu     E-mail:  chengxl@scu.edu.cn
About author:  71.15.Ap; 71.20.-b; 71.22.+i; 78.66.-w

Cite this article: 

Wu Jian-Bang (吴建邦), Cheng Xin-Lu (程新路), Zhang Hong (张红), Xiong Zheng-Wei (熊政伟) First-principles study of structural, electronic and optical properties of ZnF2 2014 Chin. Phys. B 23 077102

[1] Singh G and Gallon T E 1984 Solid State Commun. 51 281
[2] Babu K R, Lingam C B, Auluck S, Tewari S P and Vaitheeswaran G 2011 J. Solid State Chem. 184 343
[3] Shirley E L, Terminello L J, Klepeis J E and Himsel F J 1996 Phys. Rev. B 53 10296
[4] Eglitis R I, Shi H and Borstel G 2006 Surf. Rev. Lett. 13 149
[5] Letz M, Gottwald A, Richter M and Parthier L 2009 Phys. Rev. B 79 195112
[6] Martel P, Cowley R A and Stevenson R W H 1968 J. Appl. Phys. 39 1116
[7] Zavrazhnaya E M and Chepurnykh G K 2008 Phys. Solid State 50 882
[8] Lines M E 1965 Phys. Rev. 137 A982
[9] Wertheim G K, Guggenheim H J and Buchanan D N E 1969 J. Appl. Phys. 40 1319
[10] Moriya T, Motizuki K, Kanamori J and Nagamiya T 1956 J. Phys. Soc. Jpn. 11 211
[11] Ramos C A, Lederman D, King A R and Jaccarino V 1990 Phys. Rev. Lett. 65 2913
[12] Khosla R P 1969 Phys. Rev. 183 696
[13] Lee B C, Khilko A Y, Shusterman Y V, Yakovlev L, Sokolov N S and Kyutt R N 1998 Appl. Surf. Sci. 123 590
[14] Wu X and Wu Z 2006 Eur. Phys. J. B 50 521
[15] Samara G A 1979 J. Phys. Chem. Solid. 40 509
[16] Derenzo S E, Moses W W, Cahoon J L, Perera R C C and Litton J E 1990 IEEE Trans. Nucl. Sci. 37 203
[17] Ritus A I, Pronin A V, Volkov A A, Lunkenheimer P, Loidl A, Shcheulin A S and Ryskin A I 2002 Phys. Rev. B 65 5209
[18] Crawford Jr. J H and Williams F E 1950 J. Chem. Phys. 18 775
[19] Pourroy G and Poix P 1989 J. Fluorine Chem. 42 257
[20] Suzuki I, Omata T, Shiratsuchi Y, Nakatani R, Kitamura N and Otsuka-Yao-Matsuo S 2013 Thin Solid Films 534 508
[21] Masanori S, Shuhei T, Miyuki T, Akio K and Yoji K 2001 J. Non-Cryst. Solid. 284 153
[22] Tapan C, Mohamed Z and Thomas C H 2011 Appl. Phys. Lett. 98 181911
[23] Gastev S V, Hoffman K R, Kaveev A K, Reeves R J and Sokolov N S 2004 J. Cryst. Growth 268 536
[24] Yamamoto T, Mizoguchi T, Tatsumi K, Tanaka I, Adachi H, Muramatsu Y, Gullikson E M and Perera R C C 2004 Mater. Trans. 45 1991
[25] Wang L, Yuan P F, Wang F, Sun Q, Liang E J and Jia Y 2012 Mater. Res. Bull. 47 1113
[26] Senda T, Cho Y, Hirakawa T, Okamoto H, Takakura H and Hamakawa Y 2000 Jpn. J. Appl. Phys. 39 4716
[27] Keiji K and Takumi K 2008 Solid State Commun. 145 279
[28] Kabalkina S S, Vereshchagin A L F and Lityagina L M 1968 Sov. Phys.-Dokl. 12 946
[29] Perakis A, Lampakis D, Boulmetis Y C and Raptis C 2005 Phys. Rev. B 72 144108
[30] Milman V, Winkler B, White J A, Packard C J, Payne M C, Akhmatskaya E V and Nobes R H 2000 Int. J. Quantum Chem. 77 985
[31] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[32] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[33] Pfrommer B G, Cote M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233
[34] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys. Condens. Matter 14 2717
[35] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[36] Hao Y, Gao Y, Wang B, Qu J, Li Y, Hu J and Deng J 2001 Appl. Phys. Lett. 78 3277
[37] O'Toole N J and Streltsov V A 2001 Acta Cryst. B 57 128
[38] Gerlich D, Hart S and Whittal D 1984 Phys. Rev. B 29 2142
[39] Nakanishi Y, Naito S, Nakamura T, Hatanaka Y and Shimaoka G 1996 Appl. Surf. Sci. 92 400
[40] Zhang X D, Guo M L, Liu C L, Li W X and Hong X F 2008 Appl. Phys. Lett. 93 012103
[41] Mulliken R S 1955 J. Chem. Phys. 23 1833
[42] Segall M D, Pickard C J and Shah R 1996 Mol. Phys. 89 571
[43] Yun J N, Zhang Z Y, Yan J F and Deng Z H 2010 Chin. Phys. B 19 017101
[44] Segall M D, Shah R and Pickard C J 1996 Phys. Rev. B 54 16317
[45] Ambrosch D C and Sofo J O 2006 Comput. Phys. Commun. 175 1
[46] Fox M 2001 Optical Properties of Solids (New York: Oxford University Press)
[47] Wooten F 1972 Optical Properties of Solids (New York: Acadmic) p. 179
[48] Yao G, Chen Y, An X Y, Jiang Z Q, Cao L H, Wu W D and Zhao Y 2013 Chin. Phys. Lett. 30 067101
[49] Lü B, Zhou X, Linghu R F, Wang X L and Yang X D 2011 Chin. Phys. B 20 036104
[50] Maqbool M, Amin B and Ahmed I 2009 J. Opt. Soc. Am. B 26 2181
[51] Maqbool M and Kordesch M E 2009 J Opt Soc Am B 26 998
[52] Srikant V and Clarkea D R 1997 J. Appl. Phys. 81 6357
[53] Anderson O L 1963 J. Phys. Chem. Solid 24 909
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[11] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[14] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[15] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
No Suggested Reading articles found!