Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 076105    DOI: 10.1088/1674-1056/23/7/076105
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Physical properties of FePt nanocomposite doped with Ag atoms:First-principles study

Jia Yong-Fei (贾永飞)a, Shu Xiao-Lin (舒小林)a, Xie Yong (谢勇)b, Chen Zi-Yu (陈子瑜)a
a Department of Physics, Beihang University, Beijing 100191, China;
b National Center for Nanoscience and Technology, Beijing 100190, China
Abstract  L10 FePt nanocomposite with high magnetocrystalline anisotropy energy has been extensively investigated in the fields of ultra-high density magnetic recording media. However, the order-disorder transition temperature of the nanocomposite is higher than 600 ℃, which is a disadvantage for the use of the material due to the sustained growth of FePt grain under the temperature. To address the problem, addition of Ag atoms has been proposed, but the magnetic properties of the doped system are still unclear so far. Here in this paper, we use first-principles method to study the lattice parameters, formation energy, electronic structure, atomic magnetic moment and order-disorder transition temperature of L10 FePt with Ag atom doping. The results show that the formation energy of a Ag atom substituting for a Pt site is 1.309 eV, which is lower than that of substituting for an Fe site 1.346 eV. The formation energy of substituting for the two nearest Pt sites is 2.560 eV lower than that of substituting for the further sites 2.621 eV, which indicates that Ag dopants tend to segregate L10 FePt. The special quasirandom structures (SQSs) for the pure FePt and the FePt doped with two Ag atoms at the stable Pt sites show that the order-disorder transition temperatures are 1377 ℃ and 600 ℃, respectively, suggesting that the transition temperature can be reduced with Ag atom, and therefore the FePt grain growth is suppressed. The saturation magnetizations of the pure FePt and the two Ag atoms doped FePt are 1083 emu/cc and 1062 emu/cc, respectively, indicating that the magnetic property of the doped system is almost unchanged.
Keywords:  FePt      Ag      density functional theory (DFT)      order-disorder transition  
Received:  04 September 2013      Revised:  13 December 2013      Accepted manuscript online: 
PACS:  61.66.Dk (Alloys )  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  64.60.Cn (Order-disorder transformations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274033 and 61227902) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20131102130005).
Corresponding Authors:  Chen Zi-Yu     E-mail:  chenzy@buaa.edu.cn
About author:  61.66.Dk; 71.15.Mb; 64.60.Cn

Cite this article: 

Jia Yong-Fei (贾永飞), Shu Xiao-Lin (舒小林), Xie Yong (谢勇), Chen Zi-Yu (陈子瑜) Physical properties of FePt nanocomposite doped with Ag atoms:First-principles study 2014 Chin. Phys. B 23 076105

[1] Sun S, Murray C B, Weller D, Folks L and Moser A 2000 Science 287 1989
[2] Li Y L, Huang A P, Feng T F, Chen Q, Shu X L, Chen J Y and Chen Z Y 2011 Chin. Phys. Lett. 28 067502
[3] Zeng H, Li J, Liu J P, Wang Z L and Sun S 2002 Nature 420 395
[4] Yan M L, Li X Z, Gao L, Liou S H, Sellmyer D J, van de Veerdonk R J M and Wierman K W 2003 Appl. Phys. Lett. 83 3332
[5] Wiedwald U, Klimmer A, Kern B, Han L, Boyen H G, Ziemann P and Fauth K 2007 Appl. Phys. Lett. 90 062508
[6] Li Y L, Feng T F and Chen Z Y 2011 Appl. Surf. Sci. 257 3666
[7] Mosendz O, Pisana S, Reiner J W, Stipe B and Weller D 2012 J. Appl. Phys. 111 07B729
[8] Takahashi Y K, Ohkubo T, Ohnuma M and Hono K 2003 J. Appl. Phys. 93 7166
[9] Takahashi Y K, Koyama T, Ohnuma M, Ohkubo T and Hono K 2004 J. Appl. Phys. 95 2690
[10] Miyazaki T, Kitakami O, Okamoto S, Shimada Y, Akase Z, Murakami Y, Shindo D, Takahashi Y K and Hono K 2005 Phys. Rev. B 72 144419
[11] Rong C B, Li D, Nandwana V, Poudyal N, Ding Y, Wang Z L, Zeng H and Liu J P 2006 Adv. Mater. 18 2984
[12] Yang B, Asta M, Mryasov O N, Klemmer T J and Chantrell R W 2006 Acta Mater. 54 4201
[13] Chepulskii R V, Butler W H, van de Walle A and Curtarolo S 2010 Scr. Mater. 62 179
[14] Kang S, Harrell J W and Nikles D E 2002 Nano Lett. 2 1033
[15] Wang S, Kang S S, Nikles D E, Harrell J W and Wu X W 2003 J. Magn. Magn. Mater. 266 49
[16] Xu X H, Wu H S, Wang F and Li X L 2004 Appl. Surf. Sci. 233 1
[17] Tzitzios V, Niarchos D, Hadjipanayis G, Devlin E and Petridis D 2005 Acta Mater. 17 2188
[18] Zafiropoulou I, Tzitzios V, Boukos N and Niarchos D 2007 J. Magn. Magn. Mater. 316 e169
[19] Wang B, Barmak K and Klemmer T J 2010 IEEE Trans. Magn. 46 1773
[20] Wen W C, Chepulskii R V, Wang L W, Curtarolo S and Lai C H 2012 Acta Mater. 60 7258
[21] Kang S S, Nikles D E and Harrell J W 2003 J. Appl. Phys. 93 7178
[22] Song T, Tiejun Z, Chilong C and Gong H 2005 IEEE Trans. Magn. 41 3367
[23] Allia P, Celegato F, Coïsson M, Tiberto P, Vinai F, Albertini F, Casoli F and Fabbrici S 2007 J. Magn. Magn. Mater. 316 e35
[24] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[25] Ghosh G, van de Walle A and Asta M 2008 Acta Mater. 56 3202
[26] Zunger A, Wei S H, Ferreira L G and Bernard J E 1990 Phys. Rev. Lett. 65 353
[27] Jiang C, Wolverton C, Sofo J, Chen L Q and Liu Z K 2004 Phys. Rev. B 69 214202
[28] Sato K and Hirotsu Y 2004 J. Magn. Magn. Mater. 272 1497
[29] Wierman K W, Platt C L and Howard J K 2004 J. Magn. Magn. Mater. 278 214
[30] Thiele J U, Coffey K R, Toney M F, Hedstrom J A and Kellock A J 2002 J. Appl. Phys. 91 6595
[31] Thiele J U, Folks L, Toney M F and Weller D K 1998 J. Appl. Phys. 84 5686
[32] Müller M and Albe K 2005 Phys. Rev. B 72 094203
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[3] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[4] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[5] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[6] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[7] Dynamic electrostatic-discharge path investigation relied on different impact energies in metal-oxide-semiconductor circuits
Tian-Tian Xie(谢田田), Jun Wang(王俊), Fei-Bo Du(杜飞波), Yang Yu(郁扬), Yan-Fei Cai(蔡燕飞), Er-Yuan Feng(冯二媛), Fei Hou(侯飞), and Zhi-Wei Liu(刘志伟). Chin. Phys. B, 2023, 32(4): 048501.
[8] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[9] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[10] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[11] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[12] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[13] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[14] Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln = Nd, Sm, and Eu)
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊). Chin. Phys. B, 2023, 32(4): 047505.
[15] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
No Suggested Reading articles found!