Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 098502    DOI: 10.1088/1674-1056/22/9/098502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Tight-binding study of quantum transport in nanoscale GaAs Schottky MOSFET

Zahra Ahangaria, Morteza Fathipourb
a Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran;
b School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
Abstract  This paper explores the band structure effect to elucidate the feasibility of an ultra-scaled GaAs Schottky MOSFET (SBFET) in a nanoscale regime. We have employed a 20-band sp3d5s* tight-binding (TB) approach to compute E-K dispersion. The considerable difference between the extracted effective masses from the TB approach and bulk values implies that quantum confinement affects the device performance. Beside high injection velocity, the ultra-scaled GaAs SBFET suffers from a low conduction band DOS in the Γ valley that results in serious degradation of the gate capacitance. Quantum confinement also results in an increment of the effective Schottky barrier height (SBH). Enhanced Schottky barriers form a double barrier potential well along the channel that leads to resonant tunneling and alters the normal operation of the SBFET. Major factors that may lead to resonant tunneling are investigated. Resonant tunneling occurs at low temperatures and low drain voltages, and gradually diminishes as the channel thickness and the gate length scale down. Accordingly, the GaAs (100) SBFET has poor ballistic performance in nanoscale regime.
Keywords:  band structure      quantum confinement effects      resonant tunneling      Schottky MOSFET  
Received:  04 January 2013      Revised:  20 April 2013      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  73.61.Ey (III-V semiconductors)  
  31.15.aq (Strongly correlated electron systems: generalized tight-binding method)  
Corresponding Authors:  Zahra Ahangari     E-mail:  z.ahangari@iausr.ac.ir

Cite this article: 

Zahra Ahangari, Morteza Fathipour Tight-binding study of quantum transport in nanoscale GaAs Schottky MOSFET 2013 Chin. Phys. B 22 098502

[1] Xiong S, King T J and Bokor J 2005 IEEE Trans. Electron Dev. 52 1859
[2] Vega R A 2006 IEEE Trans. Electron Dev. 53 866
[3] Nishi Y, Kinoshita A, Hagishima D and Koga J 2008 Jpn. J. Appl. Phys. 47 99
[4] Larson J M and Snyder J P 2006 IEEE Trans. Electron Dev. 53 1048
[5] Luisier M 2011 IEEE Trans. Electron Dev. Lett. 32 1686
[6] Kim R, Rakshit T, Kotlyar R, Hasan S and Weber C E 2011 IEEE Trans. Electron Dev. Lett. 32 746
[7] Guan X, Lu J, Wang Y and Yu Z 2006 Proceeding of International Conference on Simulation of Semiconductor Processes and Devices p. 248
[8] Yang L, Neophytou N, Klimeck G and Lundstrom M S 2008 IEEE Trans. Electron Dev. 55 1116
[9] Seung H P, Yang L, Kharche N, Jelodar M S, Klimeck G, Lundstrom M S and Luisier M 2012 IEEE Trans. Electron Dev. Lett. 59 2107
[10] Hu J, Saraswat K C and Philip Wong H S 2010 J. Appl. Phys. 107 063712
[11] Zhu Z G, Low T, Li M F, Fan W J, Bai P, Kwong D L and Samudra G 2008 Semicond. Sci. Technol. 23 025009
[12] Boykin T B, Klimeck G, Bowen R C and Oyafuso F 2002 Phys. Rev. B 66 125207
[13] International Technology Roadmap for Semiconductors
[14] Guo J and Lundstrom M S 2002 IEEE Trans. Electron Dev. 49 1897
[15] Afzalian A and Flandre D 2011 Solid State Electronics. 65 123
[16] Toriyama S 2010 Jpn. J. Appl. Phys. 49 104204
[17] Luan S Z and Liu H X 2008 Chin. Phys. B 17 3077
[18] Datta S 2005 Quantum Transport: Atom to Transistor (Cambridge: Cambridge University Press)
[19] Shin M 2010 Appl. Phys. Lett. 97 092108
[20] Venugopal R, Ren Z, Datta S, Lundstrom M S and Jovanovic D 2002 J. Appl. Phys. 92 3730
[21] Ren Z, Venugopal R, Goasguen S and Datta S 2003 IEEE Trans. Electron Dev. 50 1914
[1] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[2] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[3] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[4] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[5] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[6] High-fidelity resonant tunneling passage in three-waveguide system
Rui-Qiong Ma(马瑞琼), Jian Shi(时坚), Lin Liu(刘琳), Meng Liang(梁猛), Zuo-Liang Duan(段作梁), Wei Gao(高伟), and Jun Dong(董军). Chin. Phys. B, 2022, 31(2): 024202.
[7] From microelectronics to spintronics and magnonics
Xiu-Feng Han(韩秀峰), Cai-Hua Wan(万蔡华), Hao Wu(吴昊), Chen-Yang Guo(郭晨阳), Ping Tang(唐萍), Zheng-Ren Yan(严政人), Yao-Wen Xing(邢耀文), Wen-Qing He(何文卿), and Guo-Qiang Yu(于国强). Chin. Phys. B, 2022, 31(11): 117504.
[8] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[9] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[10] Quantum nature of proton transferring across one-dimensional potential fields
Cheng Bi(毕成), Quan Chen (陈泉), Wei Li(李伟), and Yong Yang(杨勇). Chin. Phys. B, 2021, 30(4): 046601.
[11] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[12] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
[13] Molecular beam epitaxy growth of monolayer hexagonal MnTe2 on Si(111) substrate
S Lu(卢帅), K Peng(彭坤), P D Wang(王鹏栋), A X Chen(陈爱喜), W Ren(任伟), X W Fang(方鑫伟), Y Wu(伍莹), Z Y Li(李治云), H F Li(李慧芳), F Y Cheng(程飞宇), K L Xiong(熊康林), J Y Yang(杨继勇), J Z Wang(王俊忠), S A Ding(丁孙安), Y P Jiang(蒋烨平), L Wang(王利), Q Li(李青), F S Li(李坊森), and L F Chi(迟力峰). Chin. Phys. B, 2021, 30(12): 126804.
[14] Comparison of resonant tunneling diodes grown on freestanding GaN substrates and sapphire substrates by plasma-assisted molecular-beam epitaxy
Xiang-Peng Zhou(周祥鹏), Hai-Bing Qiu(邱海兵), Wen-Xian Yang(杨文献), Shu-Long Lu(陆书龙), Xue Zhang(张雪), Shan Jin(金山), Xue-Fei Li(李雪飞), Li-Feng Bian(边历峰), and Hua Qin(秦华). Chin. Phys. B, 2021, 30(12): 127301.
[15] Simulations of monolayer SiC transistors with metallic 1T-phase MoS2 contact for high performance application
Hai-Qing Xie(谢海情), Dan Wu(伍丹), Xiao-Qing Deng(邓小清), Zhi-Qiang Fan(范志强), Wu-Xing Zhou(周五星), Chang-Qing Xiang(向长青), and Yue-Yang Liu(刘岳阳). Chin. Phys. B, 2021, 30(11): 117102.
No Suggested Reading articles found!