Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 097304    DOI: 10.1088/1674-1056/25/9/097304

Scaling dependence of memory windows and different carrier charging behaviors in Si nanocrystal nonvolatile memory devices

Jie Yu(于杰)1, Kun-ji Chen(陈坤基)1, Zhong-yuan Ma(马忠元)1, Xin-xin Zhang(张鑫鑫)1, Xiao-fan Jiang(江小帆)1, Yang-qing Wu(吴仰晴)1, Xin-fan Huang(黄信凡)1, Shunri Oda2
1. State Key Laboratory of Solid State Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2. Quantum Nanoelectronics Research Center, Tokyo Institute of Technology, Tokyo 152-8552, Japan

Based on the charge storage mode, it is important to investigate the scaling dependence of memory performance in silicon nanocrystal (Si-NC) nonvolatile memory (NVM) devices for its scaling down limit. In this work, we made eight kinds of test key cells with different gate widths and lengths by 0.13-μm node complementary metal oxide semiconductor (CMOS) technology. It is found that the memory windows of eight kinds of test key cells are almost the same of about 1.64 V @ ± 7 V/1 ms, which are independent of the gate area, but mainly determined by the average size (12 nm) and areal density (1.8×1011/cm2) of Si-NCs. The program/erase (P/E) speed characteristics are almost independent of gate widths and lengths. However, the erase speed is faster than the program speed of test key cells, which is due to the different charging behaviors between electrons and holes during the operation processes. Furthermore, the data retention characteristic is also independent of the gate area. Our findings are useful for further scaling down of Si-NC NVM devices to improve the performance and on-chip integration.

Keywords:  silicon nanocrystals      nonvolatile memory      scaling dependence      different charging behaviors  
Received:  25 April 2016      Revised:  11 May 2016      Accepted manuscript online: 
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  73.63.Bd (Nanocrystalline materials)  

Project supported by the State Key Development Program for Basic Research of China (Grant No. 2010CB934402) and the National Natural Science Foundation of China (Grant Nos. 11374153, 61571221, and 61071008).

Corresponding Authors:  Kun-ji Chen     E-mail:

Cite this article: 

Jie Yu(于杰), Kun-ji Chen(陈坤基), Zhong-yuan Ma(马忠元), Xin-xin Zhang(张鑫鑫), Xiao-fan Jiang(江小帆), Yang-qing Wu(吴仰晴), Xin-fan Huang(黄信凡), Shunri Oda Scaling dependence of memory windows and different carrier charging behaviors in Si nanocrystal nonvolatile memory devices 2016 Chin. Phys. B 25 097304

[1] Tiwari S, Rana F, Hanafi H, Hartstein A, Crabbe E F and Chan K 1996 Appl. Phys. Lett. 68 1377
[2] Wu L C, Chen K J, Wang J M, Huang X F, Song Z T and Liu W L 2006 Appl. Phys. Lett. 89 112118
[3] Hung M F, Wu Y C and Tang Z Y 2011 Appl. Phys. Lett. 98 162108
[4] Kanoun M, Souifi A, Baron T and Mazen F 2004 Appl. Phys. Lett. 84 255079
[5] Liu Y, Dey S, Tang S, Kelly D Q, Sarkar J and Banerjee S K 2006 IEEE Trans. Electron Devices 53 2598
[6] Lin Y H, Chien C H, Lin C T, Chang C Y and Lei T F 2005 IEEE Electron Device Lett. 26 154
[7] Hinds B J, Yamanka T and Oda S 2001 J. Appl. Phys. 90 6402
[8] Chang T C, Jian F Y, Chen S C and Tsai Y T 2011 Mater. Today 14 608
[9] Lee J S 2011 Electronic Mater. Lett. 7 175
[10] Lien Y C, Shieh J M, Huang W H, Tu C H, Wang C, Shen C H, Dai B T, Pan C L, Hu C M and Yang F L 2012 Appl. Phys. Lett. 100 143501
[11] Zhang X G, Chen K J, Fang Z H, Qian X Y, Liu G Y, Jiang X F, Ma Z Y, Xu J, Huang X F, Ji J X, He F, Song K B, Zhang J, Wan H and Wang R H 2010 Chin. Phys. Lett. 27 087301
[12] Ng C Y, Chen T P, Yang M, Yang J B, Ding L, Li C M, Du A and Trigg A 2006 IEEE Trans. Electron Devices 53 663
[13] Lu T Z, Alexe M, Scholz R, Talelaev V and Zacharias M 2005 Appl. Phys. Lett. 87 202110
[14] Gerardi C, Ancarani V, Portoghese R, Giuffrida S, Bileci M, Bimbo G, Brafa O, Mello D, Ammendola G, Tripiciano E, Puglisi R and Lombardo S A 2007 IEEE Trans. Electron Devices 54 1376
[15] Huang S Y, Arai K, Usami K and Oda S 2004 IEEE Trans. Nanotechd. 3 210
[16] Fang Z H, Jiang X F, Chen K J, Wang Y F, Li W and Xu J 2015 Chin. Phys. B 24 017305
[17] Yu J, Chen K J, Ma Z Y, Zhang X X, Jiang X F, Huang X F, Zhang Y X and Wang L L 2016 J. Appl. Phys. 119 044507
[18] Qian X Y, Chen K J, Wang Y F, Jiang X F, Ma Z Y, Fang Z H, Xu J and Huang X F 2012 J. Non-Cryst. Solids 358 2344
[19] Depas M, Vermeire B, Mertens P W, Meirhaeghe R L V and Heyns M M 1995 Solid-State Electronics 38 1465
[20] Yang B L, Lai P T and Wong H 2004 Microelectronics Reliability 44 709
[21] Alay J L and Hirose M 1997 J. Appl. Phys. 81 1606
[22] Perera R, Ikeda A, Hattori R and Kuroki Y 2003 Microelectronic Engineering 65 357
[23] Collins T W and Churchill J N 1975 IEEE Trans. Electron Devices 22 90
[24] Cho C H, Kim S K, Kim B H and Park S J 2009 Appl. Phys. Lett. 95 243108
[1] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[2] Improvement of memory characteristics by employing a charge trapping layer with combining bent and flat energy bands
Zhen-Jie Tang(汤振杰), Rong Li(李荣), Xi-Wei Zhang(张希威). Chin. Phys. B, 2020, 29(4): 047701.
[3] Improved performance of Au nanocrystal nonvolatile memory by N2-plasma treatment on HfO2 blocking layer
Chen Wang(王尘), Yi-Hong Xu(许怡红), Song-Yan Chen(陈松岩), Cheng Li(李成), Jian-Yuan Wang(汪建元), Wei Huang(黄巍), Hong-Kai Lai(赖虹凯), Rong-Rong Guo(郭榕榕). Chin. Phys. B, 2018, 27(6): 067303.
[4] Surface-type nonvolatile electric memory elements based on organic-on-organic CuPc-H2Pc heterojunction
Khasan S. Karimov, Zubair Ahmad, Farid Touati, M. Mahroof-Tahir, M. Muqeet Rehman, S. Zameer Abbas. Chin. Phys. B, 2015, 24(11): 116102.
[5] Different charging behaviors between electrons and holes in Si nanocrystals embedded in SiNx matrix by the influence of near-interface oxide traps
Fang Zhong-Hui (方忠慧), Jiang Xiao-Fan (江小帆), Chen Kun-Ji (陈坤基), Wang Yue-Fei (王越飞), Li Wei (李伟), Xu Jun (徐骏). Chin. Phys. B, 2015, 24(1): 017305.
[6] Quantum confinement and surface chemistry of 0.8-1.6 nm hydrosilylated silicon nanocrystals
Pi Xiao-Dong (皮孝东), Wang Rong (王蓉), Yang De-Ren (杨德仁). Chin. Phys. B, 2014, 23(7): 076102.
[7] Low voltage program-erasable Pd-Al2O3-Si capacitors with Ru nanocrystals for nonvolatile memory application
Lan Lan (蓝澜), Gou Hong-Yan (苟鸿雁), Ding Shi-Jin (丁士进), Zhang Wei (张卫). Chin. Phys. B, 2013, 22(11): 117308.
[8] Preparation of size controllable copper nanocrystals for nonvolatile memory applications
Wang Li(王利), Sun Hong-Fang(孙红芳), Zhou Hui-Hua(周惠华), and Zhu Jing(朱静). Chin. Phys. B, 2010, 19(10): 108102.
[9] Novel material for nonvolatile ovonic unified memory (OUM)-Ag11In12Te26Sb51 phase change semiconductor
Liu Bo (刘波), Song Zhi-Tang (宋志棠), Zhang Ting (张挺), Feng Song-Lin (封松林), Gan Fu-Xi (干福熹). Chin. Phys. B, 2004, 13(7): 1167-1170.
No Suggested Reading articles found!