Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 074301    DOI: 10.1088/1674-1056/23/7/074301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Nonlinear impedances of thermoacoustic stacks with ordered and disordered structures

Ge Huan (葛欢), Fan Li (范理), Xia Jie (夏洁), Zhang Shu-Yi (张淑仪), Tao Sha (陶莎), Yang Yue-Tao (杨跃涛), Zhang Hui (张辉)
Lab of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093, China
Abstract  Nonlinear impedances of two thermoacoustic stacks with ordered structures (plate-type and pipe-type) and one with a disordered structure (copper mesh) are studied. The linear resistances, nonlinear coefficients and effective acoustic masses of the stacks are extracted from the experimental results based on an analogical model of nonlinear impedances of porous materials. The resistance and nonlinear coefficient of the disordered stack are found to be much larger than those of the ordered stacks, which have similar volume porosities. In the ordered stacks, the resistance is only marginally influenced by the length of the stack, while in the disordered stack, the resistance increases significantly with the length. These characteristics of the impedances of ordered and disordered stacks are explained with the minor loss theory and the tortuosity of a stack.
Keywords:  thermoacoustic stack      impedance      nonlinearity  
Received:  17 December 2013      Revised:  19 February 2014      Accepted manuscript online: 
PACS:  43.35.Ud (Thermoacoustics, high temperature acoustics, photoacoustic effect)  
  43.25.Gf (Standing waves; resonance)  
  43.40.Ga (Nonlinear vibration)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant Nos. 11374154, 10904067, and 11174142), the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20090091120050), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 1101020402).
Corresponding Authors:  Fan Li     E-mail:  Fanli@nju.edu.cn
About author:  43.35.Ud; 43.25.Gf; 43.40.Ga

Cite this article: 

Ge Huan (葛欢), Fan Li (范理), Xia Jie (夏洁), Zhang Shu-Yi (张淑仪), Tao Sha (陶莎), Yang Yue-Tao (杨跃涛), Zhang Hui (张辉) Nonlinear impedances of thermoacoustic stacks with ordered and disordered structures 2014 Chin. Phys. B 23 074301

[1] Higgins B 1802 Nicholson's Journal (London) p. 129
[2] Feldman K T 1968 J. Sound Vib. 7 83
[3] Rott N 1969 Zeitschrift für Angewandte Mathematik und Physik 20 230
[4] Rott N 1980 Adv. Appl. Mech. 20 135
[5] Swift G W 1988 J. Acoust. Soc. Am. 84 1145
[6] Bassem M M, Ueda Y and Akisawa A 2011 Appl. Phys. Express 4 107301
[7] Wang X M, He J Z and Tang W 2009 Chin. Phys. B 18 984
[8] Wang X M, He J Z and Liang H N 2011 Chin. Phys. B 20 020503
[9] Hofler T J 1988 Proc. of the 5th Int'l Cryocooler Conf., Monterey CA, 1988, p. 93
[10] Yang Z C, Wu F, Guo F Z and Zhang C P 2011 Acta. Phys. Sin. 60 084303 (in Chinese)
[11] Tijani M E H, Zeegers J C H and de Waele A T A M 2002 J. Appl. Phys. 92 2159
[12] Fan L, Zhang S Y and Wang B R 2006 J. Acoust. Soc. Am. 120 1381
[13] Marx D, Mao X A and Jaworski A J 2006 Appl. Acoust. 67 402
[14] Han J Q and Liu Q S 2013 Chin. Phys. Lett. 30 054301
[15] Maa D Y 1990 Chin. Phys. Lett. 7 222
[16] Maa D Y 1993 Chin. Phys. Lett. 10 343
[17] Fan L, Zhang S Y, Zheng K and Zhang H 2007 Appl. Phys. Lett. 91 241906
[18] Fan L, Zhang S Y and Zhang H 2008 J. Appl. Phys. 104 113506
[19] Marx D and Blanc-Benon P 2005 J. Acoust. Soc. Am. 118 2993
[20] Penelet G, Gusev V, Lotton P and Bruneau M 2005 Phys. Rev. E 72 016625
[21] Lihoreau B, Lotton P, Bruneau M and Gusev V 2002 Acta Acustica 88 986
[22] Ge H, Fan L, Xiao S Y, Tao S, Qiu M C, Zhang S Y and Zhang H 2012 J. Appl. Phys. 112 063518
[23] Swift G W and Keolian R M 1993 J. Acoust. Soc. Am. 94 941
[24] Attenborough K 1987 J. Acoust. Soc. Am. 81 93
[25] Attenborough K 1983 J. Acoust. Soc. Am. 73 785
[26] Roh H S, Arnott W P, Sabatier J M and Raspet R 1991 J. Acoust. Soc. Am. 89 2617
[27] Swift G W 2002 Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators (New York: American Institute of Physics Press)
[28] Swift G W and Ward W C 1996 J. Thermophys. Heat Transfer 10 652
[29] Wakeland R S and Keolian R M 2004 J. Acoust. Soc. Am. 115 2071
[30] Wakeland R S and Keolian R M 2002 J. Acoust. Soc. Am. 112 1249
[31] Attenborough K 1982 Phys. Rep. 82 179
[32] Vallabh R, Lee P B and Seyam A F 2010 J. Eng. Fibers. Fabr. 5 7
[33] Xu M Y, Waele A D and Ju Y L 1999 Cryogenics 39 865
[34] Swift G W, Gardner D L and Backhaus S 1999 J. Acoust. Soc. Am. 105 711
[35] Iwase T and Biwa T 2010 J. Appl. Phys. 107 034903
[1] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[2] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[3] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[4] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
[5] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[6] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[7] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[8] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[9] Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum
Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利). Chin. Phys. B, 2021, 30(8): 084205.
[10] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[11] Axial acoustic radiation force on an elastic spherical shell near an impedance boundary for zero-order quasi-Bessel-Gauss beam
Yu-Chen Zang(臧雨宸), Wei-Jun Lin(林伟军), Chang Su(苏畅), and Peng-Fei Wu(吴鹏飞). Chin. Phys. B, 2021, 30(4): 044301.
[12] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[13] Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity
Yagang Zhang(张亚港), Yuheng Pei(裴宇恒), Yibo Yuan(袁一博), Feng Wen(问峰), Yuzong Gu(顾玉宗), and Zhenkun Wu(吴振坤). Chin. Phys. B, 2021, 30(11): 114209.
[14] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[15] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
No Suggested Reading articles found!