Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 074209    DOI: 10.1088/1674-1056/23/7/074209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Phase transition model of water flow irradiated by high-energy laser in a chamber

Wei Ji-Feng (魏继锋)a b c d, Sun Li-Qun (孙利群)a, Zhang Kai (张凯)b d, Hu Xiao-Yang (胡晓阳)b d
a State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100084, China;
b Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China;
c Graduate School of China Academy of Engineering Physics, Beijing 100088, China;
d Key Laboratory of Laser Science and Technology, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  In the absorption chamber of a high-energy laser energy meter, water is directly used as an absorbing medium and the interaction of the high-power laser and the water flow can produce a variety of physical phenomena such as phase transitions. The unit difference method is adopted to deduce the phase transition model for water flow irradiated by a high-energy laser. In addition, the model is simulated and verified through experiments. Among them, the experimental verification uses the photographic method, shooting the distribution and the form of the air mass of water flow in different operating conditions, which are compared with the simulation results. The research shows that it is achievable to reduce the intensity of the phase transition by increasing the water flow, reducing the power intensity of the beam, shortening the distance the beam covers, reducing the initial water temperature or adopting a shorter wavelength laser. The study's results will provide the reference for the design of a water-direct-absorption-type high-energy laser energy meter as well as an analysis of the interaction processes of other similar high-power lasers and water flow.
Keywords:  phase transition      high-energy laser      water flow      photographic method  
Received:  15 August 2013      Revised:  02 January 2014      Accepted manuscript online: 
PACS:  42.87.-d (Optical testing techniques)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  44.35.+c (Heat flow in multiphase systems)  
  44.90.+c (Other topics in heat transfer)  
Corresponding Authors:  Wei Ji-Feng     E-mail:  wjfcom2000@163.com
About author:  42.87.-d; 42.62.Eh; 44.35.+c; 44.90.+c

Cite this article: 

Wei Ji-Feng (魏继锋), Sun Li-Qun (孙利群), Zhang Kai (张凯), Hu Xiao-Yang (胡晓阳) Phase transition model of water flow irradiated by high-energy laser in a chamber 2014 Chin. Phys. B 23 074209

[1] Su Y and Wan M 2004 High-Energy Laser System (Beijing: National Defense Industry Press) p. 320
[2] Smith R L and Russell T W 1972 IEEE Trans. Instrum. Measurement IM21 434
[3] Johnson E J 1997 Appl. Opt. 16 2315
[4] Li G P, Wang L and Yang Z J 2004 Acta Photon. Sin. 34 1111
[5] Thomas R S 1991 IEEE CH2940-5 227
[6] Wei J F, Zhang K, Qian S S and Zhou S 2007 High Power Laser and Particle Beams 19 1105
[7] Sonic R K, Mandloie V K and Pote M B 2007 Opt. Laser Technol. 39 198
[8] Wei J F, Sun L Q and Zhang K 2013 Meas. Sci. Technol. 24 055103
[9] Li L, Gao Z Y and Wang X 2003 Transactions of Beijing Institute of Technology 23 489
[10] Maffion R A, Dana D R and Honey R C 1991 SPIE 1537 182
[11] Swartz B A and Cummings J D 1991 SPIE 1537 50
[12] Xiao B Q, Wang Z C, Jiang G P and Chen L X 2009 Acta Phys. Sin. 58 2523 (in Chinese)
[13] Zeng J B, Li L J, Liao Q and Jiang F M 2011 Acta Phys. Sin. 60 66401 (in Chinese)
[14] Xiao B Q, Fan J T, Jiang G P and Chen L X 2012 Acta Phys. Sin. 61 154401 (in Chinese)
[15] Zhou X F and Gao L 2007 Chin. Phys. 16 2028
[16] Xiao B Q 2013 Chin. Phys. B 22 14402
[17] Chun T L and Chin P 2009 Journal of Micromechanics and Microengineering 19 55013
[18] Li T Z 1998 Appl. Opt. 19 19
[19] Schippnick P F 1990 SPIE 302 1247
[20] Zhou Y L, Sun B and Chen T K 2002 Chin. J. Nuclear Sci. Eng. 22 218
[21] Zhang S, Li J Q and Zhang B 2008 Acta Photon. Sin. 37 888
[22] Zheng R L and Liu J 2002 Acta Photon. Sin. 31 482
[23] Qing Y S and Lü B D 2001 High Power Laser and Particle Beams 13 677
[24] Luo S R, Lü B D and Zhang B 2000 Acta Photon. Sin. 10 1215
[25] Vanstralen 1979 Boiling Phenoena (New York: McGraw-Hill/Hemisphere) p. 412
[26] Butterworth D T 1977 Two-phase Flow and Heat Transfer (London: Oxford University Press) p. 245
[27] Wei J F, Sun L Q and Zhang K 2013 Appl. Phys. B 110 574
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[8] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[9] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[10] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[11] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[12] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[13] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[14] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!