CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Martensitic transformation and giant magnetic entropy change in Ni42.8Mn40.3Co5.7Sn11.2 alloy |
Chen Feng-Hua (陈峰华)a c, Gong Chang-Wei (宫长伟)b, Guo Yan-Ping (郭艳萍)b, Zhang Min-Gang (张敏刚)b, Chai Yue-Sheng (柴跃生)b |
a College of Mechanical Engineering, Heavy Machinery Engineering Research Center of Ministry of Education of China, Taiyuan University of Science and Technology, Taiyuan 030024, China; b College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China; c Department of Physics, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China |
|
|
Abstract The crystal structure, phase transition, and magnetocaloric effect in Ni42.8Mn40.3Co5.7Sn11.2 alloy are investigated by structure analysis and magnetic measurements. A large magnetic entropy change of 45.6 J/kg·K is obtained at 215 K under a magnetic field of 30 kOe (1 Oe = 79.5775 A·m-1). The effective refrigerant capacity of Ni42.8Mn40.3Co5.7Sn11.2 alloy reaches 72.1 J/kg under an applied field changing from 0 to 30 kOe. The external magnetic field shifts the martensitic transition temperature about 3-4 K/10 kOe towards low temperature, indicating that magnetic field can retard the phase transition to a certain extent. The origin of large magnetic entropy change is discussed in the paper.
|
Received: 22 September 2013
Revised: 08 December 2013
Accepted manuscript online:
|
PACS:
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
Fund: Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 2010011032-1), the Specialized Research Fund for Doctoral Scientific Research of Ministry of Education of China (Grant No. 201014151110003), the Doctoral Scientific Research Foundation of Taiyuan University of Science and Technology, China (Grant No. 20122036), the Postdoctoral Research Station Foundation of Taiyuan University of Science and Technology, China, the Research Project Supported by Shanxi Scholarship Council, China (Grant No. 2013-098), the Graduate Student Innovation Project of Shanxi Province, China (Grant No. 20133114), the National Natural Science Foundation of China (Grant No. 51375325), and the National Key Basic Research Program of China (Grant No. 2012CB722801). |
Corresponding Authors:
Zhang Min-Gang
E-mail: mgzhang@163.com
|
Cite this article:
Chen Feng-Hua (陈峰华), Gong Chang-Wei (宫长伟), Guo Yan-Ping (郭艳萍), Zhang Min-Gang (张敏刚), Chai Yue-Sheng (柴跃生) Martensitic transformation and giant magnetic entropy change in Ni42.8Mn40.3Co5.7Sn11.2 alloy 2014 Chin. Phys. B 23 067501
|
[1] |
Pecharsky V K and Gschneidner K A Jr 1997 Phys. Rev. Lett. 78 4494
|
[2] |
Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L and Planes A 2005 Nat. Mater. 4 450
|
[3] |
http://wwwferroiccoolingde/
|
[4] |
Xuan H C, Wang D H, Zhang C L, Han Z D, Gu B X and Du Y W 2008 Appl. Phys. Lett. 92 102503
|
[5] |
Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K and Oikawa K 2004 Appl. Phys. Lett. 85 4358
|
[6] |
Xuan H C, Zheng Y X, Ma S C, Cao Q Q, Wang D H and Du Y W 2010 J. Appl. Phys. 108 103920
|
[7] |
Wu Z G, Liu Z H, Yang H, Liu Y N and Wu G H 2011 Intermetallics 19 1839
|
[8] |
Krenke T, Duman E, Acet M, Moya X, Manosa L and Planes A 2007 J. Appl. Phys. 102 033903
|
[9] |
Aksoy S, Krenke T, Acet M, Wassermann E F, Moya X, Mañosa L and Planes A 2007 Appl. Phys. Lett. 91 241916
|
[10] |
Hu F X, Shen B G and Sun J R 2013 Chin. Phys. B 22 037505
|
[11] |
Dincer I, Yüzüak E and Elerman Y 2010 J. Alloys Compd. 506 508
|
[12] |
Liu Z H, Wu Z G, Yang H, Liu Y N, Wang W H, Ma X Q and Wu G H 2011 Intermetallics 19 1605
|
[13] |
Li Z, Jing C, Zhang H L, Qiao Y F, Cao S X, Zhang J C and Sun L 2009 J. Appl. Phys. 106 083908
|
[14] |
Nayak A K, Suresh K G and Nigam A K 2010 J. Appl. Phys. 107 09A927
|
[15] |
Han Z D, Wang D H, Zhang C L, Xuan H C, Zhang J R, Gua B X and Du Y W 2009 Mater. Sci. Eng. B 157 40
|
[16] |
Sharma V K, Chattopadhyay M K and Roy S B 2010 J. Phys. D: Appl. Phys. 43 225001
|
[17] |
Wang R L, Yan J B, Xiao H B, Xu L S, Marchenkov V V, Xu L F and Yang C P 2011 J. Alloys Compd. 509 6834
|
[18] |
Chen J, Han Z D, Qian B, Zhang P, Wang D H and Du Y W 2011 J. Magn. Magn. Mater. 323 248
|
[19] |
Yüzüak E, Emre B, Elerman Y and Yücel A 2010 Chin. Phys. B 19 057501
|
[20] |
Shen J, Li Y X, Dong Q Y, Wang F and Sun J R 2008 Chin. Phys. B 17 2268
|
[21] |
Ma S C, Wang D H, Xuan H C, Shen L J, Cao Q Q and Du Y W 2011 Chin. Phys. B 20 087502
|
[22] |
Tegus O, Bao L H and Song L 2013 Chin. Phys. B 22 037506
|
[23] |
Arrott A 1957 Phys. Rev. 108 1394
|
[24] |
Anzai S and Ozawa K 1978 Phys. Rev. B 18 2173
|
[25] |
Gschneidner K A Jr, Pecharsky V K, Pecharsky A O and Zimm C B 1999 Mater. Sci. Forum 315 69
|
[26] |
Gschneidner K A Jr, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
|
[27] |
Hernando B, Llamazares J L S, Prida V M, Baldomir D, Serantes D, Ilyn M and González J 2009 Appl. Phys. Lett. 94 222502
|
[28] |
Pathak A K, Dubenko I, Karaca H E, Stadler S and Ali N 2010 Appl. Phys. Lett. 97 062505
|
[29] |
Pathak A K, Khan M, Dubenko I, Stadler S and Ali N 2007 Appl. Phys. Lett. 90 262504
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|