Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 066104    DOI: 10.1088/1674-1056/23/6/066104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

The generalized planar fault energy, ductility, and twinnability of Al and Al-RE (RE=Sc, Y, Dy, Tb, Nd) at different temperatures:A first-principles study

Wu Xiao-Zhi (吴小志)a b c, Liu Li-Li (刘利利)c, Wang Rui (王锐)c, Liu Qing (刘庆)a b
a College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China;
b National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China;
c College of Physics and Institute for Structure and Function, Chongqing University, Chongqing 401331, China
Abstract  The genearlized planar fault energies of Al and Al-RE (RE = Sc, Y, Dy, Tb, Nd) alloys have been investigated using first-principles methods combined with a quasiharmonic approach. The stacking fault energies, unstable stacking fault energies, and unstable twinning energies decrease slightly with increasing temperature. The ductility parameter D, the relative barrier difference δusut, and the twinnability τa of Al and Al-RE alloys at different temperatures have been determined. It is found that the ductilities of Al and Al alloys are nearly the same and the ductilities increase slightly with increasing temperature. The RE alloying elements make twinning more likely and the twinnabilities of Al and Al alloys decrease with increasing temperature.
Keywords:  twinnability      temperature      generalized planar fault energy  
Received:  22 July 2013      Revised:  04 December 2013      Accepted manuscript online: 
PACS:  61.72.J- (Point defects and defect clusters)  
  61.72.Mm (Grain and twin boundaries)  
  61.72.Nn (Stacking faults and other planar or extended defects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104361 and 11304403) and the Fundamental Research Funds for the Central Universities, China (Grant No. CQDXWL2012015).
Corresponding Authors:  Wu Xiao-Zhi, Liu Qing     E-mail:  xiaozhiwu@cqu.edu.cn;qingliu@cqu.edu.cn

Cite this article: 

Wu Xiao-Zhi (吴小志), Liu Li-Li (刘利利), Wang Rui (王锐), Liu Qing (刘庆) The generalized planar fault energy, ductility, and twinnability of Al and Al-RE (RE=Sc, Y, Dy, Tb, Nd) at different temperatures:A first-principles study 2014 Chin. Phys. B 23 066104

[1] Hirth J P and Lothe J 1982 Theory of Dislocations, 2nd edn. (New York: John Wiley)
[2] Christian J W and Mahajan S 1995 Prog. Mater. Sci. 39 1
[3] Xie H X, Wang C Y, Yu T and Du J P 2009 Chin. Phys. B 18 251
[4] Swygenhoven H V, Derlet P M and Froseth A G 2004 Nat. Mater. 3 399
[5] Froseth A G, Derlet P M and Swygenhoven H V 2004 Appl. Phys. Lett. 85 5863
[6] Asaro R J and Suresh S 2005 Acta Mater. 53 3369
[7] Hai S and Tadmor E B 2003 Acta Mater. 51 117
[8] Siegel D J 2005 Appl. Phys. Lett. 87 121901
[9] Kibey S, Liu J B, Johnson D D and Sehitoglu H 2006 Appl. Phys. Lett. 89 191911
[10] Muzyk M, Pakiela Z and Kurzydlowski K J 2011 Scr. Mater. 64 916
[11] Saka H, Sueki Y and Imura T 1978 Philos. Mag. A 37 273
[12] Shang S L, Wang W Y, Wang Y, Du Y, Zhang J X, Patel A D and Liu Z K 2012 J. Phys.: Condens. Matter 24 155402
[13] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[14] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[15] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[16] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 78 1396
[17] Slater J C 1964 J. Chem. Phys. 41 3199
[18] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[19] van de Walle A and Geder G 2002 Rev. Mod. Phys. 74 11
[20] Kresse G, Marsman M and Furthmüller J VASP the Guidehttp://cms.mpi.univie.ac.at/vasp/
[21] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[22] Togo A, Chaput L, Tanaka I and Hug G 2010 Phys. Rev. B 81 174301
[23] Togo A 2009 Phonopy http://phonopy.sourceforge.net/
[24] de Gironcoli S 1995 Phys. Rev. B 51 6773
[25] Savrasov S Y and Savrasov D Y 1996 Phys. Rev. B 16 487
[26] Moriarty J A, Belak J F, Rudd R E, Soerlind P, Streitz F H and Yang L H 2002 J. Phys.: Condens. Matter 14 2825
[27] Wasserman E, Stixrude L and Cohen R E 1996 Phys. Rev. B 53 8296
[28] Sha X W and Cohen R E 2010 Phys. Rev. B 81 095105
[29] Wang Y, Liu Z K and Chen L Q 2004 Acta Mater. 52 2665
[30] Shang S L, Wang Y, Kim D E and Liu Z K 2010 Comput. Mater. Sci. 47 1040
[31] Liu J Z, Ghosh G, van de Walle A and Asta M 2007 Phys. Rev. B 75 104117
[32] Orlikowski D, Söderlind P and Moriarty J A 2006 Phys. Rev. B 74 054109
[33] Vinet P, Rose J H, Ferrante J and Smith J R 1989 J. Phys.: Condens. Matter 1 1941
[34] An M R, Song H Y and Su J F 2012 Chin. Phys. B 21 106202
[35] Shao Y F, Yang X, Zhao X and Wang S Q 2012 Chin. Phys. B 21 093104
[36] Wu X Z, Wang S F and Liu R P 2009 Chin. Phys. B 18 2905
[37] Rice J R 1992 J. Mech. Phys. Solids 40 239
[38] Bernstein N and Tadmor E B 2004 Phys. Rev. B 69 094116.
[39] Tadmor E B and Bernstein N 2004 J. Mech. Phys. Solids 52 2507
[40] Smallman R E and Dobson P S 1970 Metall. Trans. 1 2383
[41] Mehl M J, Papaconstantopoulos D A, Kioussis N and Herbranson M 2000 Phys. Rev. B 61 4894
[42] Basinski Z S, Szcerba M S and Embury J D 1997 Philos. Mag. A 76 743
[43] Ratuszek W and Karp J 1976 Met. Sci. 10 214
[1] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[2] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[3] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[4] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[5] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[6] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[7] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[8] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[9] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[10] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[11] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[12] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[13] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[14] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[15] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
No Suggested Reading articles found!