CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
High-energy x-ray diffraction study on phase transition asymmetry of plastic crystal neopentylglycol |
Zhe Zhang(张哲)1,2,†, Yan-Na Chen(陈艳娜)3,†, Ji Qi(齐迹)1,2, Zhao Zhang(张召)1,2, Koji Ohara4, Osami Sakata3,4, Zhi-Dong Zhang(张志东)1,2,‡, and Bing Li(李昺)1,2,§ |
1 Shenyang National Laboratory(SYNL) for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China; 3 Synchrotron X-ray Group, Research Center for Advanced Measurement and Characterization, National Institute for Materials Science(NIMS), Sayo, Japan; 4 SPring-8, Diffraction and Scattering Division, Center for Synchrotron Radiation Research Institute, Japan Synchrotron Radiation Research Institute, Sayo, Japan |
|
|
Abstract As a prototype material of colossal barocaloric effects, neopentylglycol is investigated by combining high-precision differential scanning calorimetric measurement and high-energy x-ray diffraction measurement. The diffraction data at constant temperatures indicate a first-order phase transition with thermal hysteresis as well as the phase transition asymmetry, specifically, the phase transition is completed faster at cooling than at heating. The analysis of resulting pair distribution function confirms the intermolecular disorder in the high-temperature phase. The phase transition asymmetry is quantitatively characterized by time-resolved x-ray diffraction, which is in agreement with the thermal measurement. Also, such an asymmetry is observed to be suppressed at high pressures.
|
Received: 08 May 2021
Revised: 01 July 2021
Accepted manuscript online: 14 July 2021
|
PACS:
|
68.35.Rh
|
(Phase transitions and critical phenomena)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
71.55.Jv
|
(Disordered structures; amorphous and glassy solids)
|
|
Fund: Project supported by the Key Research Program of Frontier Sciences, the Chinese Academy of Sciences (Grant No. ZDBS-LY-JSC002), the International Partner Program of the Chinese Academy of Sciences (Grant No. 174321KYSB20200008), and the National Natural Science Foundation of China (Grant Nos. 11934007 and 11804346). |
Corresponding Authors:
Zhi-Dong Zhang, Bing Li
E-mail: zdzhang@imr.ac.cn;bingli@imr.ac.cn
|
Cite this article:
Zhe Zhang(张哲), Yan-Na Chen(陈艳娜), Ji Qi(齐迹), Zhao Zhang(张召), Koji Ohara, Osami Sakata, Zhi-Dong Zhang(张志东), and Bing Li(李昺) High-energy x-ray diffraction study on phase transition asymmetry of plastic crystal neopentylglycol 2022 Chin. Phys. B 31 036802
|
[1] Moya X, Kar-Narayan S and Mathur N D 2014 Nat. Mater. 13 439 [2] Fähler S, Rößler U K, Kastner O, Eckert J, Eggeler G, Emmerich H, Entel P, Müller S, Quandt E and Albe K 2012 Adv. Eng. Mater. 14 10 [3] Gottschall T, Grácia-Condal A, Fries M, Taubel A, Pfeuffer L, Mañosa L, Planes A, Skokov K P and Gutfleisch O 2018 Nat. Mater. 17 929 [4] Li B, Kawakita Y, Ohira-Kawamura S, Sugahara T, Wang H, Wang J F, Chen Y N, Kawaguchi S.I, Kawaguchi S, Ohara K, Li K, Yu D H, Mole R, Hattori T, Kikuchi T, Yano S, Zhang Zhao, Zhang Zhe, Ren W J, Lin S C, Sakata O, Nakajima K and Zhang Z D 2019 Nature 567 506 [5] Zhang J R, Xu Y X, An S H, Sun Y, Li X D and Li Y C 2020 Chin. Phys. B 29 076202 [6] Hao J Z, Hu F X, Yu Z B, Shen F R, Zhou H B, Gao Y H, Qiao K M, Li J, Zhang C, Liang W H, Wang J, He J, Sun J R and Shen B G 2020 Chin. Phys. B 29 047504 [7] Aznar A, Lloveras P, Romanini M, Barrio M, Tamarit J L, Cazorla C, Errandonea D, Mathur N D, Planes A, Moya X and Mañosa L 2017 Nat. Commun. 8 1851 [8] Bermúdez-García J M, Sánchez-Andújar M, Castro-García S, López-Beceiro J, Artiaga R and Señarís-Rodríguez M A 2017 Nat. Commun. 8 15715 [9] Usuda E, Bom N M and Carvalho A M G 2017 Eur. Polym. J. 92 287 [10] Bom N, Imamura W, Usuda E, Paixão L and Carvalho A 2018 ACS Macro Lett. 7 31 [11] Vallone S P, Tantillo A N, dos Santos A M, Molaison J J, Kulmaczewski R, Chapoy A, Ahmadi, P, Halcrow M A and Sandeman K G 2019 Adv. Mater. 31 1807334 [12] Matsunami D, Fujita A, Takenaka K and Kano M 2015 Nat. Mater. 14 73 [13] Lin J C, Tong P, Zhang X K, Wang Z C, Zhang Z, Li B, Zhong G H, Chen J, Wu Y D, Lu H L, He L H, Bai B, Ling L S, Song W H, Zhang Z D and Sun Y P 2020 Mater. Horiz. 7 2690 [14] Wei Z, Shen Y, Zhang Z, Guo J, Li B, Liu E, Zhang Z D and Liu J 2020 APL Mater. 8 051101 [15] Aznar A, Grácia-Condal A, Planes A, Lloveras P, Barrio M, Tamarit J L, Xiong W, Cong D, Popescu C and Mañosa L 2019 Phys. Rev. Mater. 3 044406 [16] Chandra D, Day C S and Barrett C S 1993 Powder Diffr. 8 109 [17] Li F B, Li M, Xu X, Yang Z C, Xu H, Jia C K, Li K, He J, Li B and Wang H 2020 Nat. Commun. 11 4190 [18] Benson D K, Burrows R W, Webb J D 1986 Solar Energy Mater. 13 133 [19] Kohara S, Suzuya K, Kashihara Y, Matsumoto N, Umesaki N and Sakai I 2001 Nucl. Instrum. Methods Phys. Res. B 467-468 1030 [20] Isshiki M, Ohishi Y, Goto S, Takeshita K and Ishikawa T 2001 Nucl. Instrum. Methods Phys. Res. B 467-468 663 [21] Ohara K, Onodera Y, Kohara S, Koyama C, Masuno A, Misuzno A, Okada J, Tahara S, Watanabe Y, Oda H, Nakata Y, Tamaru H, Ishikawa T and Sakata O 2020 Int. J. Microgravity Sci. Appl. 37 370202 [22] Farrow C, Juhas P, Liu J, Bryndin D, Božin E, Bloch J, Proffen T and Billinge S 2007 J. Phys.:Condens. Matter 19 335219 [23] Ohara K, Tominaka S, Yamada H, Takahashi M, Yamaguchi H, Utsuno F, Umeki T, Yao A, Nakada K and Takemoto M 2018 J. Synchrotron Radiat. 25 1627 [24] Tominaka S, Yamada H, Hiroi S, Kawaguchi S I and Ohara K 2018 ACS Omega 3 8874 [25] Gutfleisch O, Gottschall T, Fries M, Benke D, Radulov I, Skokov K P, Wende H, Gruner M, Acet M, Entel P and Farle M 2016 Phil. Trans. R. Soc. A 374 20150308 [26] Guillou F, Pathak A K, Paudyal D, Mudryk Y, Wilhelm F, Rogalev A and Pecharsky V K 2018 Nat. Commun. 9 2925 [27] Hassan N, Shah I A, Khan T, Liu J, Gong Y Y, Miao X F and Xu F 2018 Chin. Phys. B 27 037504 [28] Uhlíř V, Arregi J A and Fullerton E E 2016 Nat. Commun. 7 13113 [29] Fan W, Cao J, Seidel J, Gu Y, Yim J W, Barrett C, Yu K M, Ji J, Ramesh R, Chen L Q and Wu J 2011 Phys. Rev. B 83 235102 [30] del Valle J, Ghazikhanian N, Kalcheim Y, Trastoy J, Lee M H, Rozenberg M J and Schuller I K 2018 Phys. Rev. B 98 045123 [31] House Jr J H and Kemper K A 1990 Therm. Acta 162 325 [32] Dagotto E 2005 Science 309 257 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|