Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 060701    DOI: 10.1088/1674-1056/23/6/060701
GENERAL Prev   Next  

Spatial geometric constraints histogram descriptors based on curvature mesh graph for 3D pollen particles recognition

Xie Yong-Hua (谢永华)a, Xu Zhao-Fei (徐赵飞)a, Hans Burkhardtb
a School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China;
b Department of Computer Science, Freiburg University, Freiburg 79100, Germany
Abstract  This paper presents one novel spatial geometric constraints histogram descriptors (SGCHD) based on curvature mesh graph for automatic three-dimensional (3D) pollen particles recognition. In order to reduce high dimensionality and noise disturbance arising from the abnormal record approach under microscopy, the separated surface curvature voxels are extracted as primitive features to represent the original 3D pollen particles, which can also greatly reduce the computation time for later feature extraction process. Due to the good invariance to pollen rotation and scaling transformation, the spatial geometric constraints vectors are calculated to describe the spatial position correlations of the curvature voxels on the 3D curvature mesh graph. For exact similarity evaluation purpose, the bidirectional histogram algorithm is applied to the spatial geometric constraints vectors to obtain the statistical histogram descriptors with fixed dimensionality, which is invariant to the number and the starting position of the curvature voxels. Our experimental results compared with the traditional methods validate the argument that the presented descriptors are invariant to different pollen particles geometric transformations (such as posing change and spatial rotation), and high recognition precision and speed can be obtained simultaneously.
Keywords:  pollen recognition      curvature mesh graph      spatial geometric constraints      bidirectional histogram  
Received:  21 August 2013      Revised:  25 November 2013      Accepted manuscript online: 
PACS:  07.05.Tp (Computer modeling and simulation)  
  42.30.Wb (Image reconstruction; tomography)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61375030), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20090149), and the Natural Science Foundation of Higher Education Institutions of Jiangsu Province, China (Grant No. 08KJD520019).
Corresponding Authors:  Xie Yong-Hua     E-mail:  yonghua@nuist.edu.cn

Cite this article: 

Xie Yong-Hua (谢永华), Xu Zhao-Fei (徐赵飞), Hans Burkhardt Spatial geometric constraints histogram descriptors based on curvature mesh graph for 3D pollen particles recognition 2014 Chin. Phys. B 23 060701

[1] Bush M B and Weng C Y 2007 Journal of Biogeography 34 377
[2] Xie Y H and Michael O 2010 Chin. Phys. 19 110601
[3] Zhou X L, Chen X R, Yang X D and Gou Q Q 2003 Chin. Phys. 12 1011
[4] Tian H, Cui W R, Wan T and Chen M 2008 "A Computational Approach for Recognition of Electronic Microscope Plant Pollen Images" (CISP 2008), Proceedings of the 2008 International Congress on Image and Signal Processing Haikou, Hainan, p. 259
[5] Allen G P, Hodgson R M, Marsland S R, Arnold G, Flemmer R C, Flenley J and Fountain D W 2006 "Automatic Recognition of Light-Microscope Pollen Images", Proceedings of the 21st International Conference on Image Vision and Computing, November 27-29, Great Barrier Island, New Zealand, p. 355
[6] Steven S, Eckart S, Ulrich H, Regula G, Claudio D, Barbara K, Burkhardt H, Olaf R, Wang Q, Albrecht B, Gerd S, Markus E V, Dominik G, Markus F, Wolfgang K, Wilhelm D, Hubert L, Werner M and Gernot B 2006 Automatic Pollen Recognition: Developments and Perspectives, Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 58 309
[7] Li Z, Zhang J S, Yang J and Gong Q H 2006 Chin. Phys. 15 2558
[8] Pierre B, Alian B, Monique T, Regis T, Pablo G H, Jordina B and Carman G 2002 Image Anal. Stereol. 20 527
[9] Fehr J, Ronneberger O, Kurz H and Burkhardt H 2005 "Self-Learning Segmentation and Classification of Cell-Nuclei in 3D Volumetric Data using Voxel-Wise Gray Scale Invariants", Proceedings of the 27th DAGM Symposium, August 31-September 2, 2005, Vienna, Austria, p. 377
[10] Ronneberger O, Burkhardt H and Schultz E 2002 "General-Purpose Object Recognition in 3D Volume Data Sets using Gray-Scale Invariants-Classification of Airborne Pollen-Grains Recorded with a Confocal Laser Scanning Microscope", Proceedings of the 16th International Conference on Pattern Recognition, August 11-15, 2002, Quebec, Canada, p. 290
[11] Olaf R, Wang Q and Burkhardt H 2007 Lecture Notes in Computer Science 4713 425
[12] Wang Q, Ronneberger O and Burkhardt H 2009 IEEE Transactions on Pattern Analysis and Machine Intelligence 31 1715
[13] Wong W, Shih F Y and Liu J 2007 Information Sciences 177 1878
[14] Valveny E and Marti E 2003 Pattern Recognition Letters 24 2857
[15] Yang S 2005 IEEE Transactions on Pattern Analysis and Machine Intelligence 27 278
[16] Peng S H, Kim D H, Lee S L and Chung C W 2010 Information Sciences 180 2925
[17] Qin W, Zhang Z H and Liu X H 2011 Acta Phys. Sin. 60 127303 (in Chinese)
[18] Arici T, Dikbas S and Altunbasak Y 2009 IEEE Transactions on Image Processing 18 1921
[19] Yang P F, Wu F M, Teng B T, Liu S and Jiang J Z 2010 Chin. Phys. 19 097104
[20] Ronneberger O 2007 "3D Invariants for Automated Pollen Recognition", Ph. D. Thesis, (Germany: Freiburg University)
[1] Simulation based on a modified social force model for sensitivity to emergency signs in subway station
Zheng-Yu Cai(蔡征宇), Ru Zhou(周汝), Yin-Kai Cui(崔银锴), Yan Wang(王妍), and Jun-Cheng Jiang(蒋军成). Chin. Phys. B, 2023, 32(2): 020507.
[2] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[3] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[4] Switchable vortex beam polarization state terahertz multi-layer metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(11): 114201.
[5] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[6] A modified heuristics-based model for simulating realistic pedestrian movement behavior
Wei-Li Wang(王维莉), Hai-Cheng Li(李海城), Jia-Yu Rong(戎加宇), Qin-Qin Fan(范勤勤), Xin Han(韩新), and Bei-Hua Cong(丛北华). Chin. Phys. B, 2022, 31(9): 094501.
[7] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[8] Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach
Guan-Ning Wang(王冠宁), Tao Chen(陈涛), Jin-Wei Chen(陈锦炜), Kaifeng Deng(邓凯丰), and Ru-Dong Wang(王汝栋). Chin. Phys. B, 2022, 31(6): 060402.
[9] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[10] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[11] Modeling the dynamics of firms' technological impact
Shuqi Xu(徐舒琪), Manuel Sebastian Mariani, and Linyuan Lü(吕琳媛). Chin. Phys. B, 2021, 30(12): 120517.
[12] Using agent-based simulation to assess diseaseprevention measures during pandemics
Yunhe Tong(童蕴贺), Christopher King, and Yanghui Hu(胡杨慧). Chin. Phys. B, 2021, 30(9): 098903.
[13] A comparative study on radiation reliability of composite channel InP high electron mobility transistors
Jia-Jia Zhang(张佳佳), Peng Ding(丁芃), Ya-Nan Jin(靳雅楠), Sheng-Hao Meng(孟圣皓), Xiang-Qian Zhao(赵向前), Yan-Fei Hu(胡彦飞), Ying-Hui Zhong(钟英辉), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(7): 070702.
[14] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[15] High efficiency and broad bandwidth terahertz vortex beam generation based on ultra-thin transmission Pancharatnam-Berry metasurfaces
Wenyu Li(李文宇), Guozhong Zhao(赵国忠), Tianhua Meng(孟田华), Ran Sun(孙然), and Jiaoyan Guo(郭姣艳). Chin. Phys. B, 2021, 30(5): 058103.
No Suggested Reading articles found!