INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Enhanced performance of GaN-based light-emitting diodes with InGaN/GaN superlattice barriers |
Cai Jin-Xin (蔡金鑫), Sun Hui-Qing (孙慧卿), Zheng Huan (郑欢), Zhang Pan-Jun (张盼君), Guo Zhi-You (郭志友) |
Laboratory of Nanophotonic Functional Materials and Devices, Institute of Opto-Electronic Materials and Technology, South China Normal University, Guangzhou 510631, China |
|
|
Abstract GaN-based multiple quantum well light-emitting diodes (LEDs) with conventional and superlattice barriers have been investigated numerically. Simulation results demonstrate using InGaN/GaN superlattices as barriers can effectively enhance performances of the GaN-Based LEDs, mainly owing to the improvement of hole injection and transport among the MQW active region. Meanwhile, the improved electron capture decreases the electron leakage and alleviates the efficiency droop. The weak polarization field induced by the superlattice structure strengthens the intensity of the emission spectrum and leads to a blue-shift relative to the conventional one.
|
Received: 24 July 2013
Revised: 09 November 2013
Accepted manuscript online:
|
PACS:
|
85.60.Jb
|
(Light-emitting devices)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
87.15.A-
|
(Theory, modeling, and computer simulation)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60877069) and the Science and Technology Key Program of Guangdong Province, China (Grant Nos. 2011A081301004 and 2012A080304006). |
Corresponding Authors:
Sun Hui-Qing
E-mail: sunhq@scnu.edu.cn
|
About author: 85.60.Jb; 78.60.Fi; 87.15.A-; 73.61.Ey |
Cite this article:
Cai Jin-Xin (蔡金鑫), Sun Hui-Qing (孙慧卿), Zheng Huan (郑欢), Zhang Pan-Jun (张盼君), Guo Zhi-You (郭志友) Enhanced performance of GaN-based light-emitting diodes with InGaN/GaN superlattice barriers 2014 Chin. Phys. B 23 058502
|
[1] |
Zhang J M, Zou D S, Xu C, Zou Y X, Liang T, Da X L and Shen G D 2007 Chin. Phys. 16 1135
|
[2] |
Cao D X, Guo Z Y, Liang F B, Yang X D and Huang H Y 2012 Acta Phys. Sin. 61 138502 (in Chinese)
|
[3] |
Du X Z, Lu H, Chen D J, Xiu X Q, Zhang R and Zheng Y D 2010 Chin. Phys. Lett. 27 088105
|
[4] |
Schubert M F, Xu J, Kim J K, Schubert E F, Kim M H, Yoon S, Lee S M, Sone C, Sakong T and Park Y 2008 Appl. Phys. Lett. 93 041102
|
[5] |
Mao A, Cho J, Schubert E F, Son J K, Sone C, Ha W J, Hwang S and Kim J K 2012 Electron. Mater. Lett. 8 1
|
[6] |
Chang Y A, Chang J Y, Kuo Y T and Kuo Y K 2012 Appl. Phys. Lett. 100 251102
|
[7] |
Vaxenburg R, Lifshitz E and Efros Al L 2013 Appl. Phys. Lett. 102 031120
|
[8] |
Monemar B and Sernelius B E 2007 Appl. Phys. Lett. 91 181103
|
[9] |
Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L and Yang X D 2011 Chin. Phys. B 20 098503
|
[10] |
Gong C C, Fan G H, Zhang Y Y, Xu Y Q, Liu X P, Zheng S W, Yao G R and Zhou D T 2012 Chin. Phys. B 21 068505
|
[11] |
Xia C S, Li Z M S, Li Z Q and Sheng Y 2013 Appl. Phys. Lett. 102 013507
|
[12] |
Wang L, Wang J X, Zhao W, Zou X and Luo Y 2010 Chin. Phys. B 19 076803
|
[13] |
Fu Y K, Jiang R H, Lu Y H, Chen B C, Xuan R, Fang Y H, Lin C F, Su Y K and Chen J F 2011 Appl. Phys. Lett. 98 121115
|
[14] |
Zhu D, Noemaun A N, Schubert M F, Cho J, Schubert E F, Crawford M H and Koleske D D 2010 Appl. Phys. Lett. 96 121110
|
[15] |
Liu J P, Ryou J H, Dupuis R D, Han J, Shen G D and Wang H B 2008 Appl. Phys. Lett. 93 021102
|
[16] |
Kuo Y K, Wang T H and Chang J Y 2012 Appl. Phys. Lett. 100 031112
|
[17] |
Tong J H, Li S T, Lu T P, Liu C, Wang H L, Wu L J, Zhao B J, Wang X F and Chen X 2012 Chin. Phys. B 21 118502
|
[18] |
Wacker A 2002 Phys. Rep. 357 1
|
[19] |
Xiong J Y, Zhao F, Fan G H, Xu Y Q, Liu X P, Song J J, Ding B B, Zhang T and Zheng S W 2013 Chin. Phys. B 22 118504
|
[20] |
Noh Y K, Kim M D and Oh J E 2011 J. Appl. Phys. 110 123108
|
[21] |
Jia C Y, Yu T Y, Lu H M, Zhong C T, Sun Y J, Tong Y Z and Zhang G Y 2013 Opt. Express. 21 7
|
[22] |
Luo D F, Chen C P and Peng J 2013 Chin. Phys. Lett. 30 038504
|
[23] |
Liu X P, Fan G H, Zheng S W, Gong C C, Lu T P, Zhang Y Y, Xu Y Q and Zhang T 2013 Sci. China Tech. Sci. 56 98
|
[24] |
Crosslight Software Inc. Burnaby, Canada
|
[25] |
Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
|
[26] |
Wu J 2009 J. Appl. Phys. 106 011101
|
[27] |
Fiorentini V, Bernardini F and Ambacher O 2002 Appl. Phys. Lett. 80 1204
|
[28] |
Piprek J and Li Z M S 2013 Appl. Phys. Lett. 102 131103
|
[29] |
Liu Z Q, Ma J, Yi X Y, Guo E Q, Wang L C, Wang J X 2012 Appl. Phys. Lett. 101 261106
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|