Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 058502    DOI: 10.1088/1674-1056/23/5/058502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Enhanced performance of GaN-based light-emitting diodes with InGaN/GaN superlattice barriers

Cai Jin-Xin (蔡金鑫), Sun Hui-Qing (孙慧卿), Zheng Huan (郑欢), Zhang Pan-Jun (张盼君), Guo Zhi-You (郭志友)
Laboratory of Nanophotonic Functional Materials and Devices, Institute of Opto-Electronic Materials and Technology, South China Normal University, Guangzhou 510631, China
Abstract  GaN-based multiple quantum well light-emitting diodes (LEDs) with conventional and superlattice barriers have been investigated numerically. Simulation results demonstrate using InGaN/GaN superlattices as barriers can effectively enhance performances of the GaN-Based LEDs, mainly owing to the improvement of hole injection and transport among the MQW active region. Meanwhile, the improved electron capture decreases the electron leakage and alleviates the efficiency droop. The weak polarization field induced by the superlattice structure strengthens the intensity of the emission spectrum and leads to a blue-shift relative to the conventional one.
Keywords:  superlattice barrier      numerical simulation      hole injection      GaN-based LED  
Received:  24 July 2013      Revised:  09 November 2013      Accepted manuscript online: 
PACS:  85.60.Jb (Light-emitting devices)  
  78.60.Fi (Electroluminescence)  
  87.15.A- (Theory, modeling, and computer simulation)  
  73.61.Ey (III-V semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60877069) and the Science and Technology Key Program of Guangdong Province, China (Grant Nos. 2011A081301004 and 2012A080304006).
Corresponding Authors:  Sun Hui-Qing     E-mail:  sunhq@scnu.edu.cn
About author:  85.60.Jb; 78.60.Fi; 87.15.A-; 73.61.Ey

Cite this article: 

Cai Jin-Xin (蔡金鑫), Sun Hui-Qing (孙慧卿), Zheng Huan (郑欢), Zhang Pan-Jun (张盼君), Guo Zhi-You (郭志友) Enhanced performance of GaN-based light-emitting diodes with InGaN/GaN superlattice barriers 2014 Chin. Phys. B 23 058502

[1] Zhang J M, Zou D S, Xu C, Zou Y X, Liang T, Da X L and Shen G D 2007 Chin. Phys. 16 1135
[2] Cao D X, Guo Z Y, Liang F B, Yang X D and Huang H Y 2012 Acta Phys. Sin. 61 138502 (in Chinese)
[3] Du X Z, Lu H, Chen D J, Xiu X Q, Zhang R and Zheng Y D 2010 Chin. Phys. Lett. 27 088105
[4] Schubert M F, Xu J, Kim J K, Schubert E F, Kim M H, Yoon S, Lee S M, Sone C, Sakong T and Park Y 2008 Appl. Phys. Lett. 93 041102
[5] Mao A, Cho J, Schubert E F, Son J K, Sone C, Ha W J, Hwang S and Kim J K 2012 Electron. Mater. Lett. 8 1
[6] Chang Y A, Chang J Y, Kuo Y T and Kuo Y K 2012 Appl. Phys. Lett. 100 251102
[7] Vaxenburg R, Lifshitz E and Efros Al L 2013 Appl. Phys. Lett. 102 031120
[8] Monemar B and Sernelius B E 2007 Appl. Phys. Lett. 91 181103
[9] Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L and Yang X D 2011 Chin. Phys. B 20 098503
[10] Gong C C, Fan G H, Zhang Y Y, Xu Y Q, Liu X P, Zheng S W, Yao G R and Zhou D T 2012 Chin. Phys. B 21 068505
[11] Xia C S, Li Z M S, Li Z Q and Sheng Y 2013 Appl. Phys. Lett. 102 013507
[12] Wang L, Wang J X, Zhao W, Zou X and Luo Y 2010 Chin. Phys. B 19 076803
[13] Fu Y K, Jiang R H, Lu Y H, Chen B C, Xuan R, Fang Y H, Lin C F, Su Y K and Chen J F 2011 Appl. Phys. Lett. 98 121115
[14] Zhu D, Noemaun A N, Schubert M F, Cho J, Schubert E F, Crawford M H and Koleske D D 2010 Appl. Phys. Lett. 96 121110
[15] Liu J P, Ryou J H, Dupuis R D, Han J, Shen G D and Wang H B 2008 Appl. Phys. Lett. 93 021102
[16] Kuo Y K, Wang T H and Chang J Y 2012 Appl. Phys. Lett. 100 031112
[17] Tong J H, Li S T, Lu T P, Liu C, Wang H L, Wu L J, Zhao B J, Wang X F and Chen X 2012 Chin. Phys. B 21 118502
[18] Wacker A 2002 Phys. Rep. 357 1
[19] Xiong J Y, Zhao F, Fan G H, Xu Y Q, Liu X P, Song J J, Ding B B, Zhang T and Zheng S W 2013 Chin. Phys. B 22 118504
[20] Noh Y K, Kim M D and Oh J E 2011 J. Appl. Phys. 110 123108
[21] Jia C Y, Yu T Y, Lu H M, Zhong C T, Sun Y J, Tong Y Z and Zhang G Y 2013 Opt. Express. 21 7
[22] Luo D F, Chen C P and Peng J 2013 Chin. Phys. Lett. 30 038504
[23] Liu X P, Fan G H, Zheng S W, Gong C C, Lu T P, Zhang Y Y, Xu Y Q and Zhang T 2013 Sci. China Tech. Sci. 56 98
[24] Crosslight Software Inc. Burnaby, Canada
[25] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[26] Wu J 2009 J. Appl. Phys. 106 011101
[27] Fiorentini V, Bernardini F and Ambacher O 2002 Appl. Phys. Lett. 80 1204
[28] Piprek J and Li Z M S 2013 Appl. Phys. Lett. 102 131103
[29] Liu Z Q, Ma J, Yi X Y, Guo E Q, Wang L C, Wang J X 2012 Appl. Phys. Lett. 101 261106
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[4] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[5] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[6] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[7] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[8] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[9] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[10] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[11] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[12] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[13] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[14] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[15] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
No Suggested Reading articles found!