Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 057101    DOI: 10.1088/1674-1056/23/5/057101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of the influences of oxygen defects upon the electronic properties of Nb-doped TiO2 by GGA + U methods

Song Chen-Lu (宋晨路), Yang Zhen-Hui (杨振辉), Su Ting (苏婷), Wang Kang-Kai (王慷慨), Wang Ju (王菊), Liu Yong (刘涌), Han Gao-Rong (韩高荣)
State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Abstract  The influence of oxygen defects upon the electronic properties of Nb-doped TiO2 has been studied by using the general gradient approximation (GGA)+U method. Four independent models (i.e., an undoped anatase cell, an anatase cell with a Nb dopant at Ti site (NbTi), an anatase cell with a Nb-dopant and an oxygen vacancy (NbTi+VO), and an anatase cell with a Nb-dopant and an interstitial oxygen (NbTi+Oi)) were considered. The density of states, effective mass, Bader charge, charge density, and electron localization function were calculated. The results show that in the NbTi+VO cell both eg and t2g levels of Ti 3d orbits make contributions to the electronic conductivity, and the oxygen vacancies (VO) collaborate with Nb-dopants to favor the high electrical conductivity by inducing the Nb-dopants to release more excess charges. In NbTi+Oi, an unoccupied impurity level appears in the band gap, which served as an acceptor level and suppressed the electronic conductivity. The results qualitatively coincide with experimental results and possibly provide insights into the preparation of TCOs with desirable conductivity.
Keywords:  TiO2      oxygen defects      excess charges      GGA+U method  
Received:  22 October 2013      Revised:  15 December 2013      Accepted manuscript online: 
PACS:  71.15.-m (Methods of electronic structure calculations)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51002135 and 51172200) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2013QNA4011).
Corresponding Authors:  Liu Yong     E-mail:  liuyong.mse@zju.edu.cn
About author:  71.15.-m; 71.15.Mb; 81.05.-t

Cite this article: 

Song Chen-Lu (宋晨路), Yang Zhen-Hui (杨振辉), Su Ting (苏婷), Wang Kang-Kai (王慷慨), Wang Ju (王菊), Liu Yong (刘涌), Han Gao-Rong (韩高荣) First-principles study of the influences of oxygen defects upon the electronic properties of Nb-doped TiO2 by GGA + U methods 2014 Chin. Phys. B 23 057101

[1] Furubayashi Y, Hitosugi T, Yamamoto Y, Inaba K, Kinoda G, Hirose Y, Shimada T and Hasegawa T 2005 Appl. Phys. Lett. 86 252101
[2] Hitosugi T, Yamada N, Nakao S, Hirose Y and Hasegawa T 2010 Phys. Status Solidi 207 1529
[3] Mulmi D D, Sekiya T, Kamiya N, Kurita S, Murakami Y and Kodaira T 2004 J. Phys. Chem. Solids 65 1181
[4] Kafizas A, Dunnill C W and Parkin I P 2010 J. Mater. Chem. 20 8336
[5] Yang J Y, Han Y L, He L, Dou R F, Xiong C M and Nie J C 2012 Appl. Phys. Lett. 100 202409
[6] Yamada N, Hitosugi T, Kasai J, Hoang N L H, Nakao S, Hirose Y, Shimada T and Hasegawa T 2009 J. Appl. Phys. 105 123702
[7] Sheppard L, Bak T, Nowotny J, Sorrell C C, Kumar S, Gerson A R, Barnes M C and Ball C 2006 Thin Solid Films 510 119
[8] Zhang S, Ogale S B, Yu W, Gao X, Liu T, Ghosh S, Das G P, Wee A T S, Greene R L and Venkatesan T 2009 Adv. Mater. 21 2282
[9] Hitosugi T, Ueda A, Nakao S, Yamada N, Furubayashi Y, Hirose Y, Shimada T and Hasegawa T 2007 Appl. Phys. Lett. 90 212106
[10] Zhao L, Zhao X, Liu J, Zhang A, Wang D and Wei B 2010 J. Sol-Gel Sci. Technol. 53 475
[11] Yang J Y, Li W S, Li H, Sun Y, Dou R F, Xiong C M, He L and Nie J C 2009 Appl. Phys. Lett. 95 213105
[12] Liu J, Zhao X, Duan L, Cao M, Sun H, Shao J, Chen S, Xie H, Chang X and Chen C 2011 Appl. Surf. Sci. 257 10156
[13] Hirose Y, Yamada N, Nakao S, Hitosugi T, Shimada T and Hasegawa T 2009 Phys. Rev. B 79 165108
[14] Zhang S X, Kundaliya D C, Yu W, Dhar S, Young S Y, Salamanca-Riba L G, Ogale S B, Vispute R D and Venkatesan T 2007 J. Appl. Phys. 102 013701
[15] Gillispie M A, van Hest M F A M, Dabney M S, Perkins J D and Ginley D S 2007 J. Appl. Phys. 101 033125
[16] Liu X D, Jiang E Y, Li Z Q and Song Q G 2008 Appl. Phys. Lett. 92 252104
[17] Zhang R S, Liu Y, Gao Q, Teng F, Song C L, Wang W and Han G R 2011 J. Alloys Compd. 509 9178
[18] Kamisaka H, Hitosugi T, Suenaga T, Hasegawa T and Yamashita K 2009 J. Chem. Phys. 131 034702
[19] Hitosugi T, Kamisaka H, Yamashita K, Nogawa H, Furubayashi Y, Nakao S, Yamada N, Chikamatsu A, Kumigashira H, Oshima M, Hirose Y, Shimada T and Hasegawa T 2008 Appl. Phys. Express 1 111203
[20] Zhang R S, Liu Y, Teng F, Song C L and Han G R 2012 Acta Phys. Sin. 61 017101 (in Chinese)
[21] Hohenberg P 1964 Phys. Rev. 136 B864
[22] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[23] Perdew J P 1981 Phys. Rev. B 23 5048
[24] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[25] Batista E, Heyd J, Hennig R, Uberuaga B, Martin R, Scuseria G, Umrigar C and Wilkins J 2006 Phys. Rev. B 74 121102
[26] Becke A D 1993 J. Chem. Phys. 98 5648
[27] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[28] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943
[29] H H 2004 Kotai Butsuri 39 743
[30] Tsuda N N K, Fujimori A and Siratori K 1993 Electronic Conduction in Oxides (2nd edn.) (Shokabo Tokyo)
[31] Lee H Y and Robertson J 2013 J. Appl. Phys. 113 213706
[32] Janotti A, Varley J B, Rinke P, Umezawa N, Kresse G and van de Walle C G 2010 Phys. Rev. B 81 085212
[33] Kamisaka H, Mizuguchi N and Yamashita K 2012 J. Mater. Sci. 47 7522
[34] Yang K, Dai Y and Huang B 2009 Chemphyschem. 10 2327
[35] Morgan B J, Scanlon D O and Watson G W 2009 J. Mater. Chem. 19 5175
[36] Zhou T G, Liu Z Q and Zuo X 2012 Chin. Phys. Lett. 29 047503
[37] Zahid A, Iftikhar A, Banaras K and Imad K 2013 Chin. Phys. Lett. 30 047504
[38] Xu G G, Wu J, Chen Z G, Lin Y B and Huang Z G 2012 Chin. Phys. B 21 097401
[39] Guo Y, Ai J J, Gao T and Ao B Y 2013 Chin. Phys. B 22 057103
[40] Zhang W and Tong P Q 2013 Chin. Phys. B 22 066201
[41] Cococcioni M and de Gironcoli S 2005 Phys. Rev. B 71 035105
[42] Janotti A, Segev D and van de Walle C 2006 Phys. Rev. B 74 045202
[43] Na-Phattalung S, Smith M, Kim K, Du M H, Wei S H, Zhang S and Limpijumnong S 2006 Phys. Rev. B 73 125205
[44] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[45] Kresse G and Furthmüllerb J 1996 Comput. Mater. Sci. 6 15
[46] Peng H 2008 Phys. Lett. A 372 1527
[47] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
[48] Sanville E, Kenny S D, Smith R and Henkelman G 2007 J. Comput. Chem. 28 899
[49] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[1] TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells
Can Li(李灿), Hongyu Xu(徐宏宇), Chongyang Zhi(郅冲阳), Zhi Wan(万志), and Zhen Li(李祯). Chin. Phys. B, 2022, 31(11): 118802.
[2] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[3] Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation
Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠). Chin. Phys. B, 2021, 30(5): 058505.
[4] Oxygen vacancy control of electrical, optical, and magnetic properties of Fe0.05Ti0.95O2 epitaxial films
Qing-Tao Xia(夏清涛), Zhao-Hui Li(李召辉), Le-Qing Zhang(张乐清), Feng-Ling Zhang(张凤玲), Xiang-Kun Li(李祥琨), Heng-Jun Liu(刘恒均), Fang-Chao Gu(顾方超), Tao Zhang(张涛), Qiang Li(李强), and Qing-Hao Li(李庆浩). Chin. Phys. B, 2021, 30(11): 117701.
[5] Theory of multiphoton photoemission disclosing excited states in conduction band of individual TiO2 nanoparticles
Bochao Li(李博超), Hao Li(李浩), Chang Yang(杨畅), Boyu Ji(季博宇), Jingquan Lin(林景全), and Toshihisa Tomie(富江敏尚). Chin. Phys. B, 2021, 30(11): 114214.
[6] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
[7] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[8] Elastic properties of anatase titanium dioxide nanotubes: A molecular dynamics study
Kang Yang(杨康), Liang Yang(杨亮), Chang-Zhi Ai(艾长智), Zhao Wang(王赵), Shi-Wei Lin(林仕伟). Chin. Phys. B, 2019, 28(10): 103102.
[9] Electronic structures and optical properties of Si- and Sn-doped β-Ga2O3: A GGA+U study
Jun-Ning Dang(党俊宁), Shu-wen Zheng(郑树文), Lang Chen(陈浪), Tao Zheng(郑涛). Chin. Phys. B, 2019, 28(1): 016301.
[10] Nanoforest-like CdS/TiO2 heterostructure composites: Synthesis and photoelectrochemical application
Shi Su(苏适), Jinwen Ma(马晋文), Wanlong Zuo(左万龙), Jun Wang(汪俊), Li Liu(刘莉), Shuang Feng(冯爽), Tie Liu(刘铁), Wuyou Fu(付乌有), Haibin Yang(杨海滨). Chin. Phys. B, 2018, 27(8): 088802.
[11] Image charge effect on the light emission of rutile TiO2(110) induced by a scanning tunneling microscope
Chaoyu Guo(郭钞宇), Xiangzhi Meng(孟祥志), Qin Wang(王钦), Ying Jiang(江颖). Chin. Phys. B, 2018, 27(7): 077301.
[12] Enhanced transient photovoltaic characteristics of core-shell ZnSe/ZnS/L-Cys quantum-dot-sensitized TiO2 thin-film
Kui-Ying Li(李葵英), Lun Ren(任伦), Tong-De Shen(沈同德). Chin. Phys. B, 2018, 27(6): 067305.
[13] Electronic structures and optical properties of HfO2-TiO2 alloys studied by first-principles GGA+ U approach
Jin-Ping Li(李金平), Song-He Meng(孟松鹤), Cheng Yang(杨程), Han-Tao Lu(陆汉涛), Takami Tohyama(遠山貴巳). Chin. Phys. B, 2018, 27(2): 027101.
[14] Structural, electronic, and mechanical properties of cubic TiO2: A first-principles study
Debashish Dash, Chandan K Pandey, Saurabh Chaudhury, Susanta K Tripathy. Chin. Phys. B, 2018, 27(1): 017102.
[15] Effect of hydroxyl on dye-sensitized solar cells assembled with TiO2 nanorods
Lijian Meng(孟立建), Tao Yang(杨涛), Sining Yun(云斯宁), Can Li(李灿). Chin. Phys. B, 2018, 27(1): 016802.
No Suggested Reading articles found!