Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 054503    DOI: 10.1088/1674-1056/23/5/054503
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Properties of surface waves in granular media under gravity

Zheng He-Peng (郑鹤鹏)
Department of Mathematics and Physics, Guilin Medical University, Guilin 541004, China
Abstract  Acoustical waves propagating along the free surface of granular media under gravity are investigated in the framework of elasticity theory. The influence of stress on a surface wave is analyzed. The results have shown that two types of surface waves, namely sagittal and transverse modes exist depending on initial stress states, which may have some influence on the dispersion relations of surface waves, but the influence is not great. Considering that the present experimental accuracy is far from distinguishing this detail, the validity of elasticity theory on the surface waves propagating in granular media can still be maintained.
Keywords:  granular matter      stress      surface waves  
Received:  19 October 2013      Revised:  23 December 2013      Accepted manuscript online: 
PACS:  45.70.-n (Granular systems)  
  46.40.Cd (Mechanical wave propagation (including diffraction, scattering, and dispersion))  
  81.05.Rm (Porous materials; granular materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274390) and the Natural Science Foundation of the Guangxi Higher Education Institutions of China (Grant No. 2013YB158).
Corresponding Authors:  Zheng He-Peng     E-mail:  hepengzheng@163.com
About author:  45.70.-n; 46.40.Cd; 81.05.Rm

Cite this article: 

Zheng He-Peng (郑鹤鹏) Properties of surface waves in granular media under gravity 2014 Chin. Phys. B 23 054503

[1] de Gennes P G 1999 Rev. Mod. Phys. 71 s374
[2] O'Hern C S, Silbert L E, Liu A J and Nagel S R 2003 Phys. Rev. E 68 011306
[3] Cheng X 2010 Phys. Rev. E 81 031301
[4] Andreotti B 2004 Phys. Rev. Lett. 93 238001
[5] Brownell P H 1977 Science 197 479
[6] Bonneau L, Andreotti B and Clement E 2007 Phys. Rev. E 75 016601
[7] Bonneau L, Andreotti B and Clement E 2008 Phys. Rev. Lett. 101 118001
[8] Gusev V, Aleshin V and Tournat V 2006 Phys. Rev. Lett. 96 214301
[9] Aleshin V, Gusev V and Tournat V 2007 J. Acoust. Soc. Am. 121 2600
[10] Jiang Y M and Liu M 2003 Phys. Rev. Lett. 91 144301
[11] Jiang Y M and Liu M 2007 Eur. Phys. J. E 22 255
[12] Landau L D and Lifshitz E M 1986 Theory of Elasticity (Oxford: Pergamon Press)
[13] Jaeger H M, Nagel S R and Behringer R P 1996 Rev. Mod. Phys. 68 1259
[14] Jiang Y M and Liu M 2009 Granular Matter 11 139
[15] Krimer D O, Pfitzner M, Brauer K, Jiang Y M and Liu M 2006 Phys. Rev. E 74 061310
[16] Brauer K, Pfitzner M, Krimer D O, Jiang Y M and Liu M 2006 Phys. Rev. E 74 061311
[17] Jiang Y M and Liu M 2008 Phys. Rev. E 77 021306
[18] Jiang Y M, Zheng H P, Peng Z, Fu L P, Song S X, Sun Q C, Mayer M and Liu M 2012 Phys. Rev. E 85 051304
[19] Zheng H P, Jiang Y M and Peng Z 2013 Chin. Phys. B 22 040511
[1] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[2] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[3] Resistance law of a rod penetrating a multilayer granular raft
Zonglin Li(李宗霖), Qiang Tian(田强), and Haiyan Hu(胡海岩). Chin. Phys. B, 2023, 32(3): 034501.
[4] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[5] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[6] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[7] Influence of particle size on the breaking of aluminum particle shells
Tian-Yi Wang(王天一), Zheng-Qing Zhou(周正青), Jian-Ping Peng(彭剑平),Yu-Kun Gao(高玉坤), and Ying-Hua Zhang(张英华). Chin. Phys. B, 2022, 31(7): 076107.
[8] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[9] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[10] Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface
Jingyu Han(韩靖宇), Jiahao Ding(丁甲豪), Hongyu Wu(吴宏宇), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2022, 31(3): 034601.
[11] Correlation mechanism between force chains and friction mechanism during powder compaction
Ning Zhang(张宁), Shuai Zhang(张帅), Jian-Jun Tan(谈健君), and Wei Zhang(张炜). Chin. Phys. B, 2022, 31(2): 024501.
[12] Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2022, 31(12): 128105.
[13] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[14] Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞). Chin. Phys. B, 2022, 31(1): 017601.
[15] Dependence of short channel length on negative/positive bias temperature instability (NBTI/PBTI) for 3D FinFET devices
Ren-Ren Xu(徐忍忍), Qing-Zhu Zhang(张青竹), Long-Da Zhou(周龙达), Hong Yang(杨红), Tian-Yang Gai(盖天洋), Hua-Xiang Yin(殷华湘), and Wen-Wu Wang(王文武). Chin. Phys. B, 2022, 31(1): 017301.
No Suggested Reading articles found!