Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047801    DOI: 10.1088/1674-1056/23/4/047801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of BaCu(B2O5) addition on sintering temperature and microwave dielectric properties of Ba5Nb4O15-BaWO4 ceramics

Jia Rui-Long (贾瑞龙), Su Hua (苏桦), Tang Xiao-Li (唐晓莉), Jing Yu-Lan (荆玉兰)
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  The effects of BaCu(B2O5) (BCB) addition on the microstructure, phase formation, and microwave dielectric properties of Ba5Nb4O15-BaWO4 ceramic are investigated. As a sintering aid, BaCu(B2O5) ceramic could effectively lower the sintering temperature of Ba5Nb4O15-BaWO4 ceramic from 1100 ℃ to 950 ℃ due to the liquid-phase effect. Meanwhile, BaCu(B2O5) addition effectively improves the densification of Ba5Nb4O15-BaWO4 ceramic and significantly influences the microwave dielectric properties. X-ray diffraction analysis reveals that Ba5Nb4O15 and BaWO4 coexist with no crystal phase of BaCu(B2O5) in the sintered ceramics. The Ba5Nb4O15-BaWO4 ceramics with 1.0 wt% BaCu(B2O5) sintered at 950 ℃ for 2 h presents good microwave dielectric properties of εr=19.0, high Q× f of 33802 GHz and low τf of 2.5 ppm/℃.
Keywords:  low-temperature co-fired ceramics      composite ceramics      BaCu(B2O5) (BCB)  
Received:  18 June 2013      Revised:  30 September 2013      Accepted manuscript online: 
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51372031, 61171047, 51132003, and 61271038), the Program for New Century Excellent Talents in University, China (Grant No. NCET-12-0090), and Science Fund from the Science and Technology Department of Sichuan Province, China (Grant No. 2013GZX0144).
Corresponding Authors:  Su Hua     E-mail:  uestcsh@163.com
About author:  78.20.Ci

Cite this article: 

Jia Rui-Long (贾瑞龙), Su Hua (苏桦), Tang Xiao-Li (唐晓莉), Jing Yu-Lan (荆玉兰) Effects of BaCu(B2O5) addition on sintering temperature and microwave dielectric properties of Ba5Nb4O15-BaWO4 ceramics 2014 Chin. Phys. B 23 047801

[1] Sebastian M T 2008 Dielectric Materials for Wireless Communication, Vol. 1 (Oxford: Elsevier) pp. 541-652
[2] Reaney I M and Iddles D 2006 J. Am. Ceram. Soc. 89 2063
[3] Higuchi Y, Sugimoto Y, Harada J and Tamura H 2007 J. Eur. Ceram. Soc. 27 2785
[4] Zou D, Zhang Q L, Yang H and Li S C 2008 J. Eur. Ceram. Soc. 28 2777
[5] Shen G C, Su H, Zhang H W, Jing Y L and Tang X L 2013 Chin. Phys. B 22 087801
[6] Sebastian M T and Jantunen H 2008 Int. Mat. Rev. 53 57
[7] Umemura R, Ogawa H, Ohsato H, Kan A and Yokoi A 2005 J. Eur. Ceram. Soc. 25 2865
[8] Cheng P F, Li S T, Li J Y, Ding C and Yang Y 2012 Chin. Phys. B 21 097201
[9] Zhang C H, Xu Z, Gao J J, Zhu C J and Yao X 2011 Chin. Phys. B 20 097702
[10] Pei J, Yue Z X, Zhao F, Gui Z L and Li L T 2007 J. Am. Ceram. Soc. 90 3131
[11] Galasso F and Katz L 1961 Acta Crystallogr. 14 647
[12] Zhao H, Feng S, Xu W, Shi Y, Mao Y and Zhu X 2000 J. Mater. Chem. 10 965
[13] Vineis C, Davis P K, Negas T and Bell S 1996 Mater. Res. Bull. 31 431
[14] Kim D W, Hong K S, Yoon C S and Kim C K 2003 J. Eur. Ceram. Soc. 23 2597
[15] Wang X J, Gong Z Q,Zhu J and Chen X B 2009 Chin. Phys. B 18 803
[16] Yoon S H, Kim D W, Cho S Y and Hong K S 2006 J. Eur. Ceram. Soc. 26 2051
[17] Zhuang H, Yue Z X, Zhao F and Li L T 2009 J. Alloys Compd. 472 411
[18] Kim M H, Lim J B, Kim J C, Nahm S, Paik J H, Kim J H and Park K S 2006 J. Am. Ceram. Soc. 89 3124
[19] Lim J B, Cho K H, Nahm S, Park J H and Kim J H 2006 Mater. Res. Bull. 41 1868
[20] Lim J B, Kim M H, Kim J C, Nahm S, Park J H and Kim J H 2006 Jpn. Appl. Phys. 45 L242
[21] Santha N and Sebastian M T 2008 Mater. Res. Bull. 43 2278
[22] Zhuang H, Yue Z, Zhao F and Li L 2008 J. Am. Ceram. Soc. 91 3275
[23] Lim J B, Cho K H, Nahm S, Paik J H and Kim J H 2006 Mater. Res. Bull. 41 1868
[1] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[2] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[3] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[4] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[5] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[6] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[7] Goos-Hänchen and Imbert-Fedorov shifts in tilted Weyl semimetals
Shuo-Qing Liu(刘硕卿), Yi-Fei Song(宋益飞), Ting Wan(万婷), You-Gang Ke(柯友刚), and Zhao-Ming Luo(罗朝明). Chin. Phys. B, 2022, 31(7): 074101.
[8] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[9] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[10] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
[11] Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface
Jingyu Han(韩靖宇), Jiahao Ding(丁甲豪), Hongyu Wu(吴宏宇), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2022, 31(3): 034601.
[12] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[13] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[14] Synthesis of flower-like WS2 by chemical vapor deposition
Jin-Zi Ding(丁金姿), Wei Ren(任卫), Ai-Ling Feng(冯爱玲), Yao Wang(王垚), Hao-Sen Qiao(乔浩森), Yu-Xin Jia(贾煜欣), Shuang-Xiong Ma(马双雄), and Bo-Yu Zhang(张博宇). Chin. Phys. B, 2021, 30(12): 126201.
[15] On the structural and optical properties investigation of annealed Zn nanorods in the oxygen flux
Fatemeh Abdi. Chin. Phys. B, 2021, 30(11): 117802.
No Suggested Reading articles found!