Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 046102    DOI: 10.1088/1674-1056/23/4/046102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

The stress field and energy of screw dislocation in smectic A liquid crystals and the mistakes of the classical solution

Fan Tian-You (范天佑)a, Li Xian-Fang (李显方)b
a School of Physics, Beijing Institute of Technology, Beijing 100081, China;
b Department of Engineering Mechanics, Central South University, Changsha 410075, China
Abstract  The mistakes in the classical solution of a screw dislocation in smectic A liquid crystals are pointed out. A serious problem with the well-known theory is pointed, which may be named de Gennes-Kleman-Pershan paradox and has existed for many decades in the scientific community of liquid crystal study. The correct solution is given in this paper by a simplest, elementary, and straight forward method. In connection with this, the stress field and energy of dislocation are discussed in detail. The present article provides the correct stress field and dislocation energy as well.
Keywords:  liquid crystals      dislocation      exact solution  
Received:  22 July 2012      Revised:  11 November 2013      Accepted manuscript online: 
PACS:  61.30.-v (Liquid crystals)  
  61.30.Dk (Continuum models and theories of liquid crystal structure)  
  61.30.Jf (Defects in liquid crystals)  
Corresponding Authors:  Fan Tian-You     E-mail:  tyfan2006@yahoo.com.cn
About author:  61.30.-v; 61.30.Dk; 61.30.Jf

Cite this article: 

Fan Tian-You (范天佑), Li Xian-Fang (李显方) The stress field and energy of screw dislocation in smectic A liquid crystals and the mistakes of the classical solution 2014 Chin. Phys. B 23 046102

[1] de Gennes P G and Prost J 1993 The Physics of Liquid Crystals (London: Clarendon), pp. 1-580
[2] Kleman M 1974 J. Physique 35 595
[3] Kleman M and Oswald P 1982 J. Physique 43 655
[4] Oswald P and Pieranski P 2006 Smectic and Columnar Liquid Crystals (London: Taylor & Francis), p. 1-700
[5] Landau L D and Lifshitz E M 1986 Theory of Elasticity, 3rd edn. (Oxford: Pergamon), pp.174, 178
[6] Fujii S, Komura S, Ishii Y and Lu C Y D 2011 J. Phys.: Condens. Matter 23 235105
[7] Brostow W, Cunha A M, Quintanila J and Simoes R Macromol 2002 Theory Simul. 11 308
[8] Samulski E T 1985 Faraday Discuss. Chem. Soc. 79 7
[9] Brostow W 1990 Polymer 31 979
[10] Hess M 2000 High Performance Polymers, in Performance of Plastics, ed. Brostow W (Hanser: Munich-Cincinnati), Chap. 21, p. 519
[11] Pershan P S 1974 J. Appl. Phys. 45 1590
[12] Pleiner H 1986 Liquid Crystals 1 197
[13] Kralj S and Sluckin T J 1993 Phys. Rev. E 48 3244
[14] Kralj S and Sluckin T J 1995 Liquid Crystals 18 887
[15] Kleman M 1976 Phil. Mag. 34 79
[16] Pleiner H 1986 Phil. Mag. A 54 421
[17] Pleiner H 1988 Liquid Crystals 3 247
[18] Fan T Y 2010 Mathematical Theory of Elasticity of Quasicrystals and Its Applications (Beijing: Science Press/Heidelberg, Springer-Verlag), pp. 103-120
[19] Courant R and Hilbert D 1953 Methods of Mathematical Physics (New York: Interscience Publishers), Vol. II, p. 320
[20] Muskhelishvili N I 1956 Some Basic Problems of Mathematical Theory of Elasticity (Groningen: Noordhoff), pp. 66, 67
[21] Wang C D and Yang G C 1997 Chin. Phys. 6 422
[22] Li L Yu H and Zhang Z D 2001 Chin. Phys. 10 645
[23] Ye W T, Xing H Y, Yang G C and Yuan M Y 2009 Chin. Phys. B 18 238
[24] Chang C R, Zhang Z D and Ma D L 2009 Chin. Phys. B 18 1560
[25] Zhang R, Peng Z H, Liu Y G, Zheng Z G and Xuan L 2009 Chin. Phys. B 18 4380
[26] Luo K F, Jiang X L and Yang Y L 2008 Chin. Phys. B 17 2600
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[4] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[5] A theoretical investigation of glide dislocations in BN/AlN heterojunctions
Shujun Zhang(张淑君). Chin. Phys. B, 2022, 31(11): 116101.
[6] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[7] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
[8] Preparation of AlN film grown on sputter-deposited and annealed AlN buffer layer via HVPE
Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Xu-Jun Su(苏旭军), Jun Huang(黄俊), Mu-Tong Niu(牛牧童), Jin-Tong Xu(许金通), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(3): 036801.
[9] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[10] Dislocation slip behaviors in high-quality bulk GaN investigated by nanoindentation
Kai-Heng Shao(邵凯恒), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(11): 116104.
[11] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[12] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[13] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[14] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[15] Modification of the Peierls-Nabarro model for misfit dislocation
Shujun Zhang(张淑君), Shaofeng Wang(王少峰). Chin. Phys. B, 2020, 29(5): 056102.
No Suggested Reading articles found!