|
|
Origin of diffraction fringes in two-dimensional photoelectronmomentum distributions for single ionization of atoms in few-cycle intense laser pulses |
Guo Zhi-Jian (郭志坚)a, Chen Zhang-Jin (陈长进)b, Zhou Xiao-Xin (周效信)a |
a College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China;
b Department of Physics, College of Science, Shantou University, Shantou 515063, China |
|
|
Abstract We use the strong field approximation with a time window function controlling the release time of electrons to study the intra-cycle and inter-cycle interferences in few-cycle intense laser pulses impinging on He. The diffraction fringes, i.e., the vertical stripe-like structure, observed in the experimental two-dimensional photoelectron momentum distributions of Gopal et al. (2009 Phys. Rev. Lett. 103 053001) have been attributed to the interplay of the intra-and inter-cycle interferences. The pure numerical calculations by solving the time-dependent Schrödinger equation are also performed and the results are compared with the experimental measurements directly. It has been found that the position of the stripe-like structure can be used to determine the duration of the laser pulses used in experiments.
|
Received: 17 August 2013
Revised: 14 September 2013
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274219 and 11264036), the STU Scientific Research Foundation for Talents, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China. |
Corresponding Authors:
Chen Zhang-Jin
E-mail: chenzj@stu.edu.cn
|
About author: 32.80.Rm; 32.80.Fb |
Cite this article:
Guo Zhi-Jian (郭志坚), Chen Zhang-Jin (陈长进), Zhou Xiao-Xin (周效信) Origin of diffraction fringes in two-dimensional photoelectronmomentum distributions for single ionization of atoms in few-cycle intense laser pulses 2014 Chin. Phys. B 23 043201
|
[1] |
Rudenko A, Zrost K, Schröter C D, de Jesus V L B, Feuerstein B, Moshammer R and Ullrich J 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407
|
[2] |
Maharjan C M, Alnaser A S, Litvinyuk I, Ranitovic P and Cocke C L 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1955
|
[3] |
Freeman R R, Bucksbaum P H, Milchberg H, Darack S, Schumacher D and Geusic M E 1987 Phys. Rev. Lett. 59 1092
|
[4] |
Chen Zhangjin, Morishita T, Le A T, Wickenhauser M, Tong X M and Lin C D 2006 Phys. Rev. A 74 053405
|
[5] |
Paulus G G, Grasbon F, Walther H, Villoresi P, Nisoli M, Stagira S, Priori E and De Silvestri S 2001 Nature 414 182
|
[6] |
Paulus G G, Lindner F, Walther H, Baltuška A, Goulielmakis E, Lezius M and Krausz F 2003 Phys. Rev. Lett. 91 253004
|
[7] |
Apolonski A, Dombi P, Paulus G G, Kakehata M, Holzwarth R, Udem Th, Lemell Ch, Torizuka K, Burgdörfer J, Hänsch T W and Krausz F 2004 Phys. Rev. Lett. 92 073902
|
[8] |
Martiny Christian Per Juul and Madsen Lars Bojer 2006 Phys. Rev. Lett. 97 093001
|
[9] |
Wittmann T, Horvath B, Helml W, Schätzel M G, Gu X, Cavalieri A L, Paulus G G and Kienberger R 2009 Nat. Phys. 5 357
|
[10] |
Lindner F, Schätzel M G, Walther H, Baltuška A, Goulielmakis E, Krausz F, Milošević D B, Bauer D, Becker W and Paulus G G 2005 Phys. Rev. Lett. 95 040401
|
[11] |
Gopal R, Simeonidis K and Moshammer R, et al. 2009 Phys. Rev. Lett. 103 053001
|
[12] |
Arbó D G, Yoshida S, Persson E, Dimitriou K I and Burgdörfer J 2006 Phys. Rev. Lett. 96 143003
|
[13] |
Arbó D G, Ishikawa K L, Schiessl K, Persson E and Burgdörfer J 2010 Phys. Rev. A 81 021403(R)
|
[14] |
Arbó D G, Ishikawa K L, Schiessl K, Persson E and Burgdörfer J 2010 Phys. Rev. A 82 043426
|
[15] |
Bian X B, Huismans Y and Smirnova O, et al. 2011 Phys. Rev. A 84 043420
|
[16] |
Arbó D G, Ishikawa K L, Persson E and Burgdörfer J 2012 Nucl. Instrum. Method Phys. Res. B 279 24
|
[17] |
Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
|
[18] |
Chen Zhangjin, Morishita T, Le A T and Lin C D 2007 Phys. Rev. A 76 043402
|
[19] |
Tong X M and Lin C D 2005 J. Phys. B: At. Mol. Opt. Phys. 38 2593
|
[20] |
Tong X M and Chu S I 1997 Chem. Phys. 217 119
|
[21] |
Morishita T, Chen Zhangjin, Watanabe S and Lin C D 2007 Phys. Rev. A 75 023407
|
[22] |
Harris D O, Engerholm G G and Gwinn W D 1965 J. Chem. Phys. 43 1515
|
[23] |
Dickinson A S and Certain P R 1968 J. Chem. Phys. 49 4209
|
[24] |
Light J C and Walker R B 1976 J. Chem. Phys. 65 4272
|
[25] |
Remetter T, Johnsson P, Mauritsson J, Varjú K, Ni Y, Lépine F, Gustafsson E, Kling M, Khan J, López-Martens R, Schafer K J, Vrakking M J J and L'uillier A 2006 Nat. Phys. 2 323
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|