|
|
Influence of Coulomb force between two electrons on double ionization of He-like atoms |
Peipei Liu(刘培培), Yongfang Li(李永芳), and Jingtao Zhang(张敬涛)† |
Department of Physics, Shanghai Normal University, Shanghai 200234, China |
|
|
Abstract In strong-field double ionization, two electrons are ionized by intense laser field. These two electrons move in the laser field and the state is described by a Coulomb-Volkov state, where the repulsive Coulomb state describes the relative motion of the two electrons and the Volkov state describes the center-of-mass motion of the two electrons in the laser field. In the frame of scattering theory, we derive a simple analytical formula of the double ionization of He-like atoms. The effect of the Coulomb force between two electrons on the double ionization process is discussed. Numerical studies disclose that the Coulomb force enhances the ionization rate of high-energy electrons but suppresses the ionization rate of the lowest-energy electrons.
|
Received: 31 March 2021
Revised: 27 May 2021
Accepted manuscript online: 21 June 2021
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
34.50.Rk
|
(Laser-modified scattering and reactions)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 11674231 and 12074261) and the Shanghai Natural Science Foundation, China (Grant No. 20ZR1441600). |
Corresponding Authors:
Jingtao Zhang
E-mail: jtzhang@shnu.edu.cn
|
Cite this article:
Peipei Liu(刘培培), Yongfang Li(李永芳), and Jingtao Zhang(张敬涛) Influence of Coulomb force between two electrons on double ionization of He-like atoms 2022 Chin. Phys. B 31 013202
|
[1] Becker W, Liu X, Ho P and Eberly J H 2012 Rev. Mod. Phys. 84 1011 [2] Xu T T, Zhu Q Y, Chen J H, Ben S and Liu X S 2018 Opt. Express 26 1645 [3] Ben S, Guo P Y, Pan X F, Xu T T and Song K L 2017 Chem. Phys. Lett. 679 38 [4] Mancuso C A, Dorney K M, Hickstein D D, Chaloupka J L and Murnane M M 2016 Phys. Rev. Lett. 117 133201 [5] Corkum P B 1993 Phys. Rev. Lett. 71 1994 [6] Rudenko A, de Jesus V L, Ergler T, Zrost T, Feuerstein B, Schörer C D, Moshammer H and Ullrich J 2007 Phys. Rev. Lett. 99 263003 [7] Weber T, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M and Döner R 2000 Nature 405 658 [8] Staudte A, Ruiz C, Schöffler M, Schössler S, Zeidler D, Weber Th, Meckel M, Villeneuve D M, Corkum P B, Becker A and Dorner R 2007 Phys. Rev. Lett. 99 263002 [9] Bergues B, Küel M, Johnson N G, Fischer B, Camus N, Betsch K J, Herrwerth O, Senftleben A, Sayler A M, Rathje T, Ben-Itzhak I, Jones R R, Paulus G G, Krausz F, Moshammer R, Ullrich J and Kling M F 2012 Nat. Commun. 3 813 [10] Pfeiffer A N, Cirelli C, Smolarski M, Döner R and Keller U2011 Nat. Phys. 7 428 [11] Kulander K C 1987 Phys. Rev. A 35 445 [12] Panfili R, Eberly J and Haan S 2001 Opt. Express 8 431 [13] Becker A and Faisal F H M 2002 Phys. Rev. Lett. 89 193003 [14] Lein M, Gross E K U and Engel V 2001 Phys. Rev. A 64 023406 [15] Henrichs K, Waitz M, Trinter F, Kim H, Menssen A, Gassert H, Sann H, Jahnke H, Wu J and Pitzer M 2013 Phys. Rev. Lett. 111 113003 [16] Faisal F H M 1994 Phys. Lett. A 187 180 [17] Guo D S, Berg T and Crasemann B 1989 Phys. Rev. A 40 4997 [18] Guo D S and Drake G W F 1992 J. Phys. A 25 3383 [19] Guo D S, Freeman R R and Wu Y S 1998 Phys. Rev. A 58 521 [20] Guo F M, Song Y, Chen J G, Zeng S L and Yang Y J 2012 Acta Phys. Sin 61 163203 (in Chinese) [21] Xu T T, Zhang L L, Jin Z and Gong W J 2020 Chin. Phys. B 29 093202 [22] Hao J X, Hao X L, Li W D, Hu S L and Chen J 2017 Chin. Phys. Lett. 34 043201 [23] Zhang J T and Nakajima T 2007 Phys. Rev. A 75 43403 [24] Cionga A, Florescu V, Maquet A and Taieb R 1993 Phys. Rev. A 47 1830 [25] Lin Q H and Ren Z Z 2009 Nucl. Phys. Rev. 26 231 (in Chinese) [26] Burlon R, Lenone C, Basile S, Trombetta F and Ferrante G 1988 Phys. Rev. A 37 390 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|