Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 043101    DOI: 10.1088/1674-1056/23/4/043101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

First-principles study on anatase TiO2 (101) surface adsorption of NO

Feng Qing (冯庆)a b, Yue Yuan-Xia (岳远霞)a b, Wang Wei-Hua (王渭华)a b, Zhu Hong-Qiang (朱洪强)a b
a College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China;
b Chongqing Key Laboratory on Optoelectronic Functional Materials, Chongqing 401331, China
Abstract  

In this paper, the stable structure and the electronic and optical properties of nitric oxide (NO) adsorption on the anatase TiO2 (101) surface are studied using the plane-wave ultrasoft pseudopotential method, which is based on the density functional theory. NO adsorption on the surface is weak when the outermost layer terminates on twofold coordinated oxygen atoms, but it is remarkably enhanced on the surface containing O vacancy defects. The higher the concentration of oxygen vacancy defects, the stronger the adsorption is. The adsorption energies are 3.4528 eV (N end adsorption), 2.6770 eV (O end adsorption), and 4.1437 eV (horizontal adsorption). The adsorption process is exothermic, resulting in a more stable adsorption structure. Furthermore, O vacancy defects on the TiO2 (101) surface significantly contribute to the absorption of visible light in a relatively low-energy region. A new absorption peak in the low-energy region, corresponding to an energy of 0.9 eV, is observed. However, the TiO2 (101) surface structure exhibits weak absorption in the low-energy region of visible light after NO adsorption.

Keywords:  anatase TiO2 (101) surface      first-principles      density functional theory      electronic structures  
Received:  03 July 2013      Revised:  26 August 2013      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  71.15.Dx (Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.-m (Methods of electronic structure calculations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61106129 and 61274128).

Corresponding Authors:  Feng Qing     E-mail:  fengq_126@163.com
About author:  31.15.A-; 71.15.Dx; 71.15.Mb; 71.15.-m

Cite this article: 

Feng Qing (冯庆), Yue Yuan-Xia (岳远霞), Wang Wei-Hua (王渭华), Zhu Hong-Qiang (朱洪强) First-principles study on anatase TiO2 (101) surface adsorption of NO 2014 Chin. Phys. B 23 043101

[1] Wang Y 2005 Acta Chim. Sin. 63 1023 (in Chinese)
[2] Wang Y and Meng L 2005 Acta Phys. Sin. 54 2207 (in Chinese)
[3] Wang Y and Liu X 2006 Journal of Lanzhou Jiaotong University (Natural Sciences) 25 47 (in Chinese)
[4] Ma X G, Tang C Q and Yang X H 2007 J. Theor. Comput. Chem. 6 23
[5] Ma X G 2006 Ph. D. Dissertation, "The Theoretical Study of the Anatase TiO2 Surface" (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[6] Chen Q L, Tang C Q and Zheng G 2009 Physica B: Conden. Matter 404 1074
[7] Chen Q L and Tang C Q 2009 Acta Phys. Chim. Sin. 25 915
[8] Sun F Y and Shi H 2008 Forest Engin. 24 48
[9] Sumita M, Hu C P and Tateyama Y 2010 J. Phys. Chem. C 114 18529
[10] Finazzi E and Valentin C D 2007 J. Phys. Chem. C 111 9275
[11] Long R, English N J and Dai Y 2009 J. Phys. Chem. C 113 17464
[12] Wanbayor R, Deak P, Frauenheim T and Ruangpornvisuti V 2011 J. Chem. Phys. 134 104701
[13] Wanbayor R and Ruangpornvisuti V 2010 J. Mol. Structure: THEOCHEM 925 103
[14] Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X and Zhou W B 2006 Acta Phys. Sin. 55 4208 (in Chinese)
[15] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[16] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[17] Yang Y, Feng Q, Wang W H and Wang Y 2013 J. Semicond. 34 073004
[18] Hebenstreit W, Ruzycki N, Herman G S, Gao Y F and Diebold U 2000 Phys. Rev. B 62 16334
[19] Ma X G, Jiang J J and Liang P 2008 Acta Phys. Sin. 57 3120 (in Chinese)
[20] Han Y, Liu C J and Ge Q F 2006 Phys. Chem. B 110 7463
[21] Hou Q Y, Zhang Y and Zhang T 2008 Acta Phys. Sin. 57 1862 (in Chinese)
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[9] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[10] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[11] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[12] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[13] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[14] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[15] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
No Suggested Reading articles found!