Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 040302    DOI: 10.1088/1674-1056/23/4/040302
GENERAL Prev   Next  

Nonlocal non-Markovian effects in dephasing environments

Xie Dong (谢东), Wang An-Min (王安民)
Department of Modern Physics, University of Science and Technology of China, Hefei 230027, China
Abstract  We study the nonlocal non-Markovian effects through local interactions between two subsystems and the corresponding two environments. It has been found that the initial correlations between two environments can turn a Markovian to a non-Markovian regime with extra control on the local interaction time. We further research the nonlocal non-Markovian effects from two situations: without extra control, the nonlocal non-Markovian effects only appear under the condition that two local dynamics are non-Markovian-non-Markovian (both of the two local dynamics are non-Markovian) or Markovian-non-Markovian, but not under the condition of Markovian-Markovian; with extra control, the nonlocal non-Markovian effects can occur under the condition of Markovian-Markovian. It shows that the function of correlations between two environments has an upper bound, which makes a flow of information from the environment back to the global system beginning finitely earlier than that back to one of the two local systems, not infinitely. Then, we proposed two special ways to distribute classical correlations between two environments without initial correlations. Finally, from numerical solutions in the spin star configuration, we found that the self-correlation (internal correlation) of each environment promotes the nonlocal non-Markovian effects.
Keywords:  non-Markovian      Markovian      nonlocal      bound  
Received:  29 May 2013      Revised:  29 August 2013      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.-p (Quantum optics)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10975125 and 11375168).
Corresponding Authors:  Xie Dong, Wang An-Min     E-mail:  xiedong@mail.ustc.edu.cn;anmwang@ustc.edu.cn
About author:  03.67.-a; 03.65.Yz; 42.50.-p; 03.65.Ta

Cite this article: 

Xie Dong (谢东), Wang An-Min (王安民) Nonlocal non-Markovian effects in dephasing environments 2014 Chin. Phys. B 23 040302

[1] Spohn H 1980 Rev. Mod. Phys. 52 569
[2] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[3] Akihito I and Fleming G R 2009 J. Chem. Phys. 130 234110
[4] Akihito I and Fleming G R 2009 J. Chem. Phys. 130 234111
[5] Bellomo B, Franco R L and Compagno G 2007 Phys. Rev. Lett. 99 160502
[6] Sarovar M, Ishizaki A, Fleming G R and Whaley K B 2010 Nat. Phys. 6 462
[7] Dijkstra A G and Tanimura Y 2010 Phys. Rev. Lett. 104 250401
[8] Liao J Q, Huang J F, Kuang L M and Sun C P 2010 Phys. Rev. A 82 052109
[9] Imamoglu A 1994 Phys. Rev. A 50 3650
[10] Wang X Y, Ding B F and Zhao H P 2013 Chin. Phys. B 22 040308
[11] Ding B F, Wang X Y, Tang Y F, Mi X W and Zhao H P 2011 Chin. Phys. B 20 060304
[12] Huelga S F, Rivas Á and Plenio M B 2012 Phys. Rev. Lett. 108 160402
[13] Xue S B, Wu R B, Zhang W M, Zhang J, Li C W and Tarn T J 2012 Phys. Rev. A 86 052304
[14] Guérin T, Bénichou O and Voituriez R 2012 Nat. Chem. 4 568
[15] Hoeppe U, Wolff C, Kuchenmeister J, Niegemann J, Drescher M, Benner H and Busch K 2012 Phys. Rev. Lett. 108 043603
[16] Madsen K H, Ates S, Lund-Hansen T, Löffler A, Reitzenstein S, Forchel A and Lodahl P 2011 Phys. Rev. Lett. 106 233601
[17] Laine E M, Breuer H P, Piilo J, Li C F and Guo G C 2012 Phys. Rev. Lett. 108 210402
[18] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (New York: Oxford University Press)
[19] Leggett A J, Chakravarty S, Dorsey A, Fisher M, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
[20] Weiss U 2008 Quantum Dissipative Systems (Singapore: World Scientific)
[21] Breuer H P, Burgarth D and Petruccione F 2004 Phys. Rev. B 70 045323
[22] Wolf M M, Eisert J, Cubitt T S and Cirac J I 2008 Phys. Rev. Lett. 101 150402
[23] Clos G and Breuer H P 2012 Phys. Rev. A 86 012115
[24] Rivas Á, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
[25] Luo S, Fu S and Song H 2012 Phys. Rev. A 86 044101
[26] Sangouard N, Simon C, Riedmatten H D and Gisin N 2011 Rev. Mod. Phys. 83 33
[27] Paz-Silva G A, Rezakhani A T, Dominy J M and Lidar D A 2012 Phys. Rev. Lett. 108 080501
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[3] Observation of size-dependent boundary effects in non-Hermitian electric circuits
Luhong Su(苏鹭红), Cui-Xian Guo(郭翠仙), Yongliang Wang(王永良), Li Li(李力), Xinhui Ruan(阮馨慧), Yanjing Du(杜燕京), Shu Chen(陈澍), and Dongning Zheng(郑东宁). Chin. Phys. B, 2023, 32(3): 038401.
[4] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[5] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[6] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[7] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[8] Negative self-feedback induced enhancement and transition of spiking activity for class-3 excitability
Li Li(黎丽), Zhiguo Zhao(赵志国), and Huaguang Gu(古华光). Chin. Phys. B, 2022, 31(7): 070506.
[9] Effects of single synthetic jet on turbulent boundary layer
Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(7): 074702.
[10] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[11] Constructing the three-qudit unextendible product bases with strong nonlocality
Bichen Che(车碧琛), Zhao Dou(窦钊), Xiubo Chen(陈秀波), Yu Yang(杨榆), Jian Li(李剑), and Yixian Yang(杨义先). Chin. Phys. B, 2022, 31(6): 060302.
[12] Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system
Yi-Cai Zhang(张义财). Chin. Phys. B, 2022, 31(5): 050311.
[13] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
[14] Nonlocal nonreciprocal optomechanical circulator
Ji-Hui Zheng(郑继会), Rui Peng(彭蕊), Jiong Cheng(程泂), Jing An(安静), and Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2022, 31(5): 054204.
[15] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
No Suggested Reading articles found!