|
|
Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED |
Wen Jing-Ji (文晶姬)a, Yeon Kyu-Hwanga, Wang Hong-Fu (王洪福)b, Zhang Shou (张寿)b |
a Department of Physics, College of Natural Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea; b Department of Physics, College of Science, Yanbian University, Yanji 133002, China |
|
|
Abstract A scheme is proposed to generate an N-qubit cluster-type entangled squeezed vacuum state (CTESVS) based on the two-photon interaction between a two-level atom and the cavity fields with the cavity QED system. The CTESVS in N separate cavities can be effectively obtained after performing a simple one-qubit measurement on the atom. The influence of cavity decay on the CTESVS is also discussed.
|
Received: 30 July 2013
Revised: 31 August 2013
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
Fund: Project supported by the International Research & Development Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) of Korea (Grant No. 2011-0030864), the National Natural Science Foundation of China (Grant Nos. 11264042 and 61068001), the China Postdoctoral Science Foundation (Grant No. 2012M520612), the Program for Chun Miao Excellent Talents of Jilin Provincial Department of Education (Grant No. 201316), and the Talent Program of Yanbian University of China (Grant No. 950010001). |
Corresponding Authors:
Wang Hong-Fu, Zhang Shou
E-mail: hfwang@ybu.edu.cn;szhang@ybu.edu.cn
|
About author: 03.65.Ud; 42.50.Dv; 42.50.Pq |
Cite this article:
Wen Jing-Ji (文晶姬), Yeon Kyu-Hwang, Wang Hong-Fu (王洪福), Zhang Shou (张寿) Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED 2014 Chin. Phys. B 23 040301
|
[1] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[2] |
Cerf N J 2001 Phys. Rev. A 63 052311
|
[3] |
Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
|
[4] |
Yang Y G, Wen Q Y and Zhu F C 2005 Acta Phys. Sin. 54 5544 (in Chinese)
|
[5] |
Bennett C H, Gilles B, Claude C, Richard J, Asher P and William K W 1993 Phys. Rev. Lett. 70 1895
|
[6] |
van Enk S J and Hirota O 2001 Phys. Rev. A 64 022313
|
[7] |
Zhang Q, Li F L and Li H R 2006 Acta Phys. Sin. 55 2275 (in Chinese)
|
[8] |
Wang H F, Zhu A D, Zhang S and Yeon K H 2013 Phys. Rev. A 87 062337
|
[9] |
Wang H F and Zhang S 2008 Chin. Phys. B 17 1165
|
[10] |
Wang H F, Zhang S and Yeon K H 2012 Chin. Phys. B 21 040306
|
[11] |
Wang H F, Zhang S and Yeon K H 2008 J. Korean Phys. Soc. 53 1787
|
[12] |
Wang H F, Zhu A D and Zhang S 2013 Opt. Express 21 12484
|
[13] |
Greenberger D M, Horne M, Shimony A and Zeilinger A 1990 Am. J. Phys. 58 1131
|
[14] |
Mermin N D 1990 Phys. Rev. Lett. 65 1838
|
[15] |
Xi X Q, Hao S R, Chen W X and Yue R H 2002 Chin. Phys. Lett. 19 1044
|
[16] |
Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
|
[17] |
Guo J Y 2002 Chin. Phys. Lett. 19 1041
|
[18] |
Song X G and Feng X L 2004 Chin. Phys. Lett. 21 497
|
[19] |
Dür W and Briegel H J 2004 Phys. Rev. Lett. 92 180403
|
[20] |
Wang H F and Zhang S 2009 Eur. Phys. J. D 53 359
|
[21] |
Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
|
[22] |
Schlingemann D and Werner R F 2001 Phys. Rev. A 65 012308
|
[23] |
Richard C, Daniel G and Lo H 1999 Phys. Rev. Lett. 83 648
|
[24] |
Philip W, Markus A, Kevin J R and Anton Z 2005 Phys. Rev. Lett. 95 020403
|
[25] |
Zheng H Y, Zhang X T, Shao X Q, Wen J J and Zhang S 2008 Chin. Phys. Lett. 25 836
|
[26] |
Guo Q, Bai J, Cheng L Y, Shao X Q, Wang H F and Zhang S 2011 Phys. Rev. A 83 054303
|
[27] |
Su S L, Wang Y, Guo Q, Wang H F and Zhang S 2012 Chin. Phys. B 21 044205
|
[28] |
Song J, Xia Y, Song H S, Guo J L and Nie J 2007 Europhys. Lett. 80 60001
|
[29] |
Song J, Xia Y and Song H S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 065507
|
[30] |
Zhan Z M and Li W B 2007 Chin. Phys. Lett. 24 344
|
[31] |
Zheng S B 2006 Phys. Rev. A 24 065802
|
[32] |
Guo G P, Zhang H, Tu T and Guo G C 2007 Phys. Rev. A 75 050301(R)
|
[33] |
Xue Z Y and Wang Z D 2007 Phys. Rev. A 75 064303
|
[34] |
Mandel O, Greiner M, Widera A, Tom T, Hänsch T W and Bloch I 2003 Nature 425 937
|
[35] |
Walther P, Resch K J, Rudolph T, Schenck E, Weinfurter H, Vedral V, Aspelmeyer M and Zeilinger A 2005 Nature 434 169
|
[36] |
Su X, Tan A, Jia X, Zhang J, Xie C and Peng K 2007 Phys. Rev. Lett. 98 070502
|
[37] |
Tokunaga Y, Kuwashiro S, Yamamoto T, Koashi M and Imoto N 2008 Phys. Rev. Lett. 100 210501
|
[38] |
Zhang J and Braunstein S L 2006 Phys. Rev. A 73 032318
|
[39] |
Menicucci N C, van Loock P, Gu M, Weedbrook C, Ralph T C and Nielsen M A 2006 Phys. Rev. Lett. 97 110501
|
[40] |
Munhoz P P, Semiao F L, Vildiella-Barranco A and Roversi J A 2008 Phys. Lett. A 372 3580
|
[41] |
Becerra-Castro E M, Cardoso W B, Avelar A T and Baseia B 2008 J. Phys. B: At. Mol. Opt. Phys. 41 085505
|
[42] |
Yang Z B, Wu H Z, Zheng S B and Jia L J 2008 Chin. Phys. B 17 4207
|
[43] |
Wang W F, Sun X Y and Luo X B 2008 Chin. Phys. Lett. 25 839
|
[44] |
An N B and Kim J 2009 Phys. Rev. A 80 042316
|
[45] |
Fan Q B and Zhou L 2010 Int. J. Theor. Phys. 49 128
|
[46] |
An N B, Kim K and Kim J 2011 Quantum Inf. Comput. 11 124
|
[47] |
Wen J J, Shao X Q, Jin X R, Zhang S and Yeon K H 2008 Chin. Phys. B 17 1618
|
[48] |
Chen C Y, Feng M and Gao K L 2006 Phys. Rev. A 73 034305
|
[49] |
Kuhr S, Gleyzes S, Guerlin C, Bernu J, Hoff U B, Delglise S, Osnaghi S, Brune M and Raimond J M 2007 Appl. Phys. Lett. 90 164101
|
[50] |
Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
|
[51] |
Meunier T, Gleyzes S, Maioli P, Auffeves A, Nogues G, Brune M, Raimond J M and Haroche S 2005 Phys. Rev. Lett. 94 010401
|
[52] |
Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M and Haroche S 1999 Phys. Rev. Lett. 83 5166
|
[53] |
Boozer A D, Boca A, Miller R, Northup T E and Kimble H J 2006 Phys. Rev. Lett. 97 083602
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|