Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 038404    DOI: 10.1088/1674-1056/23/3/038404
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Analysis and modeling of resistive switching mechanism oriented to fault tolerance of resistive memory based on memristor

Huang Da (黄达)a b, Wu Jun-Jie (吴俊杰)b, Tang Yu-Hua (唐玉华)b
a State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, China;
b School of Computer, National University of Defense Technology, Changsha 410073, China
Abstract  With the progress of the semiconductor industry, resistive memories, especially the memristor, have drawn increasing attention. The resistive memory based on memrsitor has not been commercialized mainly because of data error. Currently, there are more studies focused on fault tolerance of resistive memory. This paper studies the resistive switching mechanism which may have time-varying characteristics. Resistive switching mechanism is analyzed and its respective circuit model is established based on the memristor Spice model.
Keywords:  resistive RAM      fault tolerance      resistive switching mechanism      circuit model  
Received:  21 June 2013      Revised:  14 August 2013      Accepted manuscript online: 
PACS:  84.32.-y (Passive circuit components)  
  89.20.Ff (Computer science and technology)  
  84.37.+q (Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60921062).
Corresponding Authors:  Huang Da     E-mail:  huangda1109@163.com

Cite this article: 

Huang Da (黄达), Wu Jun-Jie (吴俊杰), Tang Yu-Hua (唐玉华) Analysis and modeling of resistive switching mechanism oriented to fault tolerance of resistive memory based on memristor 2014 Chin. Phys. B 23 038404

[1] Wang Y, Jia S and Gan X W 2011 Acta Scientiarum Naturalium Universitatis Pekinensis 47 565 (in Chinese)
[2] Chua L 1971 IEEE Trans. Circuit Theory CT-18 507
[3] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[4] Pan H L, Cheng J K, Zhao Z J, He J K, Ruan J Z, Yang X L and Yuan W Z 2008 Acta Phys. Sin. 57 3230 (in Chinese)
[5] Hu H Y, Zhang H M, Lu Y, Dai X Y, Hou H, Ou J F and Wang X Y 2006 Acta Phys. Sin. 55 403 (in Chinese)
[6] Chua L 1976 Proc. IEEE 64 2
[7] Li H S 2011 Unipolar Resistive Switching Investigation of ZrO2 and m ZrO2-NiO Dielectric Layer (MS Thesis) (Taiwan: National Taiwan University of Science and Technology) (in Chinese)
[8] Xia Y D, He W Y, Chen L, Meng X K and Liu Z G 2007 Nano Lett. 90 022907
[9] Kim S H and Choi Y K 2009 IEEE Trans. Electron Dev. 56 3049
[10] Stanley W R 2008 IEEE Spectrum 45 28
[11] Huang D, Wu J J and Tang Y H 2013 Acta Phys. Sin. 22 038201 (in Chinese)
[12] Nagel L W 1975 A Computer Program to Simulate Semiconductor Circuits: User’s Guide for Spice (California: University of California) pp. 1–9
[13] Zhou J and Huang D 2012 Acta Phys. Sin. 21 048401 (in Chinese)
[14] Fu D, Zhang C H and Zhang D 2010 Chin. Phys. Lett. 27 098102
[1] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[2] Review of resistive switching mechanisms for memristive neuromorphic devices
Rui Yang(杨蕊). Chin. Phys. B, 2020, 29(9): 097305.
[3] Electrical modeling of dielectric barrier discharge considering surface charge on the plasma modified material
Hong-Lu Guan(关弘路), Xiang-Rong Chen(陈向荣), Tie Jiang(江铁), Hao Du(杜浩), Ashish Paramane, Hao Zhou(周浩). Chin. Phys. B, 2020, 29(7): 075204.
[4] Simulation and measurement of millimeter-wave radiation from Josephson junction array
Xin Zhang(张鑫), Sheng-Hui Zhao(赵生辉), Li-Tian Wang(王荔田), Jian Xing(邢建), Sheng-Fang Zhang(张胜芳), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Xin-Jie Zhao(赵新杰), Ming He(何明), Lu Ji(季鲁). Chin. Phys. B, 2019, 28(6): 060305.
[5] Modeling and optimization of the multichannel spark discharge
Zhi-Bo Zhang(张志波), Yun Wu(吴云), Min Jia(贾敏), Hui-Min Song(宋慧敏), Zheng-Zhong Sun(孙正中), Ying-Hong Li(李应红). Chin. Phys. B, 2017, 26(6): 065204.
[6] An optimized fitting function with least square approximation inInAs/AlSb HFET small-signal model for characterizingthe frequency dependency of impact ionization effect
He Guan(关赫), Hui Guo(郭辉). Chin. Phys. B, 2017, 26(5): 058501.
[7] Charge transport and bipolar switching mechanismin a Cu/HfO2/Pt resistive switching cell
Tingting Tan(谭婷婷), Tingting Guo(郭婷婷), Zhihui Wu(吴志会), Zhengtang Liu(刘正堂). Chin. Phys. B, 2016, 25(11): 117306.
[8] An equivalent circuit model for terahertz quantumcascade lasers: Modeling and experiments
Yao Chen (姚辰), Xu Tian-Hong (徐天鸿), Wan Wen-Jian (万文坚), Zhu Yong-Hao (朱永浩), Cao Jun-Cheng (曹俊诚). Chin. Phys. B, 2015, 24(9): 094208.
[9] Transfer function modeling and analysis of the open-loop Buck converter using the fractional calculus
Wang Fa-Qiang (王发强), Ma Xi-Kui (马西奎). Chin. Phys. B, 2013, 22(3): 030506.
[10] Analysis and modeling of resistive switching mechanisms oriented to resistive random-access memory
Huang Da (黄达), Wu Jun-Jie (吴俊杰), Tang Yu-Hua (唐玉华). Chin. Phys. B, 2013, 22(3): 038401.
No Suggested Reading articles found!