Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030506    DOI: 10.1088/1674-1056/22/3/030506
GENERAL Prev   Next  

Transfer function modeling and analysis of the open-loop Buck converter using the fractional calculus

Wang Fa-Qiang (王发强), Ma Xi-Kui (马西奎)
State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus, the transfer function modeling and analysis of the open-loop Buck converter in continuous conduction mode (CCM) operation are carried out in this paper. The fractional order small signal model and the corresponding equivalent circuit of the open-loop Buck converter in CCM operation are presented. The transfer functions from the input voltage to the output voltage, from the input voltage to the inductor current, from the duty cycle to the output voltage, from the duty cycle to the inductor current, and the output impedance of the open-loop Buck converter in CCM operation are derived, and their bode diagrams and step responses are calculated, respectively. It is found that all the derived fractional order transfer functions of the system are influenced by the fractional orders of the inductor and the capacitor. Finally, the realization of the fractional order inductor and the fractional order capacitor is designed, and the corresponding PSIM circuit simulation results of the open-loop Buck converter in CCM operation are given to confirm the correctness of the derivations and the theoretical analysis.
Keywords:  Buck converter      small signal equivalent circuit model      fractional calculus      transfer function  
Received:  20 May 2012      Revised:  08 October 2012      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  84.30.Jc (Power electronics; power supply circuits)  
  45.10.Hj (Perturbation and fractional calculus methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51007068), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100201120028), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2012JQ7026), the Fundamental Research Funds for the Central Universities of China (Grant No. 2012jdgz09), and the State Key Laboratory of Electrical Insulation and Power Equipment of China (Grant No. EIPE12303).
Corresponding Authors:  Wang Fa-Qiang     E-mail:

Cite this article: 

Wang Fa-Qiang (王发强), Ma Xi-Kui (马西奎) Transfer function modeling and analysis of the open-loop Buck converter using the fractional calculus 2013 Chin. Phys. B 22 030506

[1] Kazimierczuk M K 2008 Pulse-width Modulated DC-DC Power Vonverters (London: John Wiley and Sons)
[2] Zhang W P 2006 Modeling and Control of Switching Converter (Bejing: China Electric Power Press)
[3] Wang F Q, Zhang H and Ma X K 2008 Acta Phys. Sin. 57 2842 (in Chinese)
[4] Czarkowski D and Kazimierczuk M K 1993 IEEE Trans. Aerosp. Electron. Syst. 29 1059
[5] Bernardo M D and Vasca F 2000 IEEE Trans. Circuits Syst. I, Reg. Paper. 47 130
[6] Tse C K 2004 Complex Behavior of Switching Power Converters (New York: CRC Press)
[7] Fang C C 2011 IEEE Trans Power Electron. 26 2335
[8] Maity S, Tripathy D, Bhattacharya T K and Banerjee S 2007 IEEE Trans. Circuits Syst. I, Reg. Papers 54 1120
[9] Su Y K, Chen B, Lin C and Zhang H G 2009 Fuzzy Sets and Systems 160 3539
[10] Cui L L, Zhang H G, Chen B and Zhang Q L 2010 Neurocomputing 73 1293
[11] Liu Z W, Zhang H G and Zhang Q L 2010 IEEE Trans. Neural Networks 21 1710
[12] Ahmed E and Elgazzar A S 2007 Physica A 379 607
[13] Zhang R X and Yang S P 2012 Chin. Phys. B 21 080505
[14] Zhang L, Deng K and Luo M K 2012 Chin. Phys. B 21 090505
[15] Westerlund S 2002 Dead Matter Has Memory! (Kalmar: Causal Consulting)
[16] Westerlund S and Ekstam L 1994 IEEE Trans. Dielectrics and Electrical Insulation 1 826
[17] Jonscher A K 1983 Dielectric Relaxation in Solids (London: Chelsea Dielectric Press)
[18] Petráš I 2008 Chaos Soliton. Fract. 38 140
[19] Martín R, Quintana J J, Ramos A and Nuez I D L 2008 J. Computational Nonlinear Dyn. 3 021303
[20] Bertrand N, Sabatier J, Briat O and Vinassa J 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 1327
[21] Jesus I S and Tenreiro Machado J A 2009 Nonlinear Dyn. 56 45
[22] Tenreiro Machado J A and Galhano A M S F 2012 Nonlinear Dyn. 68 107
[23] Podlubny I 1999 Fractional Differential Equations (San Diego: Academic Press)
[24] Xue D Y and Chen Y Q 2008 Advanced Applied Mathematical Problem Solutions with MATLAB (2nd edn.) (Beijing: Tsinghua University Press)
[25] Olalla C, Leyva R, EI Aroudi A, Garces P and Queinnec I 2010 IET Power Electron. 3 75
[26] EI Aroudi A and Orabi M 2010 IEEE Trans. Circuits Syst. II, Express Briefs 57 56
[27] Oustaloup A, Levron F, Mathieu B and Nanot F M 2000 IEEE Trans. Circuits Syst. I, Reg. Papers 47 25
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[3] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[4] Modeling and character analyzing of multiple fractional-order memcapacitors in parallel connection
Xiang Xu(徐翔), Gangquan Si(司刚全), Zhang Guo(郭璋), and Babajide Oluwatosin Oresanya. Chin. Phys. B, 2022, 31(1): 018401.
[5] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[6] Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation
Zong-Li Yang(杨宗立), Dong Liang(梁栋), Da-Wei Ding(丁大为), Yong-Bing Hu(胡永兵), and Hao Li(李浩). Chin. Phys. B, 2021, 30(12): 120515.
[7] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[8] Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order
Qiu-Yan He(何秋燕), Bo Yu(余波), Xiao Yuan(袁晓). Chin. Phys. B, 2017, 26(4): 040202.
[9] Simplified modeling of frequency behavior in photonic crystal vertical cavity surface emitting laser with tunnel injection quantum dot in active region
Mehdi Riahinasab, Vahid Ahmadi, Elham Darabi. Chin. Phys. B, 2017, 26(2): 024211.
[10] A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations
Li-Min Zhang(张立民), Ke-Hui Sun(孙克辉), Wen-Hao Liu(刘文浩), Shao-Bo He(贺少波). Chin. Phys. B, 2017, 26(10): 100504.
[11] Bifurcation and chaos in high-frequency peak current mode Buck converter
Chang-Yuan Chang(常昌远), Xin Zhao(赵欣), Fan Yang(杨帆), Cheng-En Wu(吴承恩). Chin. Phys. B, 2016, 25(7): 070504.
[12] Dynamics and stabilization of peak current-mode controlled buck converter with constant current load
Leng Min-Rui (冷敏瑞), Zhou Guo-Hua (周国华), Zhang Kai-Tun (张凯暾), Li Zhen-Hua (李振华). Chin. Phys. B, 2015, 24(10): 100504.
[13] Solving the atmospheric scattering optical transfer function using the multi-coupled single scattering method
Sun Bin (孙斌), Hong Jin (洪津), Sun Xiao-Bing (孙晓兵). Chin. Phys. B, 2014, 23(9): 094201.
[14] Abundant solutions of Wick-type stochastic fractional 2D KdV equations
Hossam A. Ghany, Abd-Allah Hyder. Chin. Phys. B, 2014, 23(6): 060503.
[15] The fractional coupled KdV equations:Exact solutions and white noise functional approach
Hossam A. Ghany, A. S. Okb El Bab, A. M. Zabel, Abd-Allah Hyder. Chin. Phys. B, 2013, 22(8): 080501.
No Suggested Reading articles found!