Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 037104    DOI: 10.1088/1674-1056/23/3/037104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of the electronic structure and optical properties of cubic Perovskite NaMgF3

Li Zhen-Li (李贞丽)a b, An Xin-You (安辛友)b, Cheng Xin-Lu (程新路)a, Wang Xue-Min (王雪敏)b, Zhang Hong (张红)a, Peng Li-Ping (彭丽萍)b, Wu Wei-Dong (吴卫东)b
a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610064, China;
b Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, Chinese Academy of Engineering Physics, Mianyang 621900, China
Abstract  The structural, electronic, and optical properties of cubic perovskite NaMgF3 are calculated by plane-wave pseudopotential density functional theory. The calculated lattice constant a0, bulk modulus B0, and the derivative of bulk modulus B0’ are 3.872 Å, 78.2 GPa, and 3.97, respectively. The results are in good agreement with the available experimental and theoretical values. The electronic structure shows that cubic NaMgF3 is an indirect insulator with a wide forbidden band gap of Eg=5.90 eV. The contribution of the different bands is analyzed by total and partial density of states curves. Population analysis of NaMgF3 indicates that there is strong ionic bonding in the MgF2 unit, and a mixture of ionic and weak covalent bonding in the NaF unit. Calculations of dielectric function, absorption coefficient, refractive index, electronic energy loss spectroscopy, optical reflectivity, and conductivity are also performed in the energy range 0 to 70 eV.
Keywords:  density functional theory      cubic perovskite NaMgF3      electronic properties      optical properties  
Received:  31 July 2013      Revised:  17 September 2013      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11176020).
Corresponding Authors:  Peng Li-Ping     E-mail:  pengliping2005@126.com

Cite this article: 

Li Zhen-Li (李贞丽), An Xin-You (安辛友), Cheng Xin-Lu (程新路), Wang Xue-Min (王雪敏), Zhang Hong (张红), Peng Li-Ping (彭丽萍), Wu Wei-Dong (吴卫东) First-principles study of the electronic structure and optical properties of cubic Perovskite NaMgF3 2014 Chin. Phys. B 23 037104

[1] El Ouenzerfi R, Ono S, Quema A, Goto M, Sakai M, Sarukura N, Nishimatsu T, Terakubo N, Mizuseki H, Kawazoe Y, Sato H, Ehrentraut D, Yoshikawa A and Fukuda T 2004 J. Appl. Phys. 96 7655
[2] Shimamura K, Sato H, Bensalah A, Sudesh V, Machida H, Sarukura N and Fukuda T 2001 Cryst. Res. Technol. 36 801
[3] Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park N Y, Stephenson G B, Stolitchnov I, Taganstev A K, Taylor D V, Yamada T and Streiffer S 2006 J. Appl. Phys. 100 051606
[4] Lim S H, Rastogi A C and Desu S B 2004 J. Appl. Phys. 96 5673
[5] Cooke A H, Jones D A, Silva J F A and Wells M R 1975 Solid State Phys. 8 4083
[6] Springis M, Sharakovsky A, Tale I and Rogulis U 2005 Phys. Status Solidi C 2 511
[7] Nishimatsu T, Terakubo N, Mizuseki H, Kawazoe Y, Pawlak D A, Shimamura K and Fukuda T 2002 Jpn. J. Appl. Phys. 41 365
[8] Knierim W, Honold A, Brauch U and Durr U 1986 J. Opt. Soc. Am. B 3 119
[9] Babu K E, Veeraiah A, Swamy D T and Veeraiah V 2012 Chin. Phys. Lett. 29 117102
[10] Hörsch G and Paus H J 1986 Opt. Commun. 60 69
[11] Fukuda T, Shimamura K, Yoshikawa A and Villora E G 2001 Opto-electron. Rev. 9 109
[12] Takahashi H and Onaka R 1977 J. Phys. Soc. Jpn. 43 2021
[13] Chao E C T, Evans H T, Skinner B J and Milton C 1961 Am. Mineral. 46 379
[14] Zhao Y, Weidner D J, Parise J B and Cox D E 1993 Phys. Earth Planet. Inter. 76 1
[15] Zhao Y, Weidner D J, Parise J B and Cox D E 1993 Phys. Earth Planet. Inter. 76 17
[16] Zhao Y, Weidner D J, Ko J, Leinenweber K, Liu X, Li B, Meng Y, Pacalo R E G, Vaughan M T, Wang Y and Yeganeh-Haeri A 1994 J. Geophys. Res. 99 2871
[17] Zhao Y, Parise J B, Wang Y B, Kusaba K, Vaughan M T, Weidner D J, Kikegawa T, Chen J H and Shimomura O 1994 Am. Mineral. 79 615
[18] Chen J, Liu H, Martin C D, Parise J B and Weidner D J 2005 Am. Mineral. 90 1534
[19] Zhao Y and Weidner D J 1993 Phys. Chem. Miner. 20 419
[20] Andersen N H, Kjems J K and Hayes W 1985 Solid State Lonics 17 143
[21] Seretlo J R, Martin J J and Sonder E 1976 Phys. Rev. B 14 5404
[22] Sevonkaev I, Goia D V and Matijević E 2008 J. Colloid Interface Sci. 317 130
[23] Zhang X M, Quan Z W, Yang J, Yang P P, Lian H Z and Lin J 2009 J. Colloid Interface Sci. 329 103
[24] Li L and Weidner D J 2012 Phys. Earth Planet. Inter. 194–195 98
[25] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[26] Vanderbilt D 1990 Phys. Rev. B 41 7892
[27] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[28] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[29] Pack J D and Monkhorst H J 1977 Phys. Rev. B 16 1748
[30] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[31] Milman V, Winkler B, White J A, Packard C J, Payne M C, Akhmatskaya E V and Nobes R H 2000 Int. J. Quantum Chem. 77 895
[32] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[33] Martin C D, Chupas P J, Chapman K W and Parise J B 2007 J. Appl. Crystallogr. 40 441
[34] Luaña V, Costales A and Pendás A M 1997 Phys. Rev. B 55 4285
[35] Geguzina G A and Sakhnenko V P 2004 Crystall. Rep. 49 15
[36] Mulliken R S 1955 J. Chem. Phys. 23 1833
[37] Segall M D, Pickard C J, Shah R and Payne M C 1996 Mol. Phys. 89 571
[38] Segall M D, Shah R, Pickard C J and Payne M C 1996 Phys. Rev. B 54 16317
[39] Ambrosch D C and Sofo J O 2006 Comput. Phys. Commun. 175 1
[40] Fox M 2001 Optical Properties of Solids (New York: Oxford University Press)
[41] Wooten F 1972 Optical Properties of Solids (New York: Acadmic Press) p. 179
[42] Maqbool M, Amin B and Ahmed I 2009 J. Opt. Soc. Am. B 26 2181
[43] Maqbool M, Kordesch M E and Kayani A 2009 J. Opt. Soc. Am. B 26 998
[44] Srikant V and Clarke D R 1997 J. Appl. Phys. 81 6357
[45] Murtaza G, Ahmad I, Maqbool M, Rahnamaye Aliabad H A and Afaq A 2011 Chin. Phys. Lett. 28 117803
[46] Secuk M N, Dogan E K, Aycibin M, Erdinc B and Akkus H 2013 Am. J. Mod. Phys. 2 77
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[8] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[11] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[14] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[15] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
No Suggested Reading articles found!