CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
First-principles study of the electronic structure and optical properties of cubic Perovskite NaMgF3 |
Li Zhen-Li (李贞丽)a b, An Xin-You (安辛友)b, Cheng Xin-Lu (程新路)a, Wang Xue-Min (王雪敏)b, Zhang Hong (张红)a, Peng Li-Ping (彭丽萍)b, Wu Wei-Dong (吴卫东)b |
a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610064, China; b Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, Chinese Academy of Engineering Physics, Mianyang 621900, China |
|
|
Abstract The structural, electronic, and optical properties of cubic perovskite NaMgF3 are calculated by plane-wave pseudopotential density functional theory. The calculated lattice constant a0, bulk modulus B0, and the derivative of bulk modulus B0’ are 3.872 Å, 78.2 GPa, and 3.97, respectively. The results are in good agreement with the available experimental and theoretical values. The electronic structure shows that cubic NaMgF3 is an indirect insulator with a wide forbidden band gap of Eg=5.90 eV. The contribution of the different bands is analyzed by total and partial density of states curves. Population analysis of NaMgF3 indicates that there is strong ionic bonding in the MgF2 unit, and a mixture of ionic and weak covalent bonding in the NaF unit. Calculations of dielectric function, absorption coefficient, refractive index, electronic energy loss spectroscopy, optical reflectivity, and conductivity are also performed in the energy range 0 to 70 eV.
|
Received: 31 July 2013
Revised: 17 September 2013
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11176020). |
Corresponding Authors:
Peng Li-Ping
E-mail: pengliping2005@126.com
|
Cite this article:
Li Zhen-Li (李贞丽), An Xin-You (安辛友), Cheng Xin-Lu (程新路), Wang Xue-Min (王雪敏), Zhang Hong (张红), Peng Li-Ping (彭丽萍), Wu Wei-Dong (吴卫东) First-principles study of the electronic structure and optical properties of cubic Perovskite NaMgF3 2014 Chin. Phys. B 23 037104
|
[1] |
El Ouenzerfi R, Ono S, Quema A, Goto M, Sakai M, Sarukura N, Nishimatsu T, Terakubo N, Mizuseki H, Kawazoe Y, Sato H, Ehrentraut D, Yoshikawa A and Fukuda T 2004 J. Appl. Phys. 96 7655
|
[2] |
Shimamura K, Sato H, Bensalah A, Sudesh V, Machida H, Sarukura N and Fukuda T 2001 Cryst. Res. Technol. 36 801
|
[3] |
Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park N Y, Stephenson G B, Stolitchnov I, Taganstev A K, Taylor D V, Yamada T and Streiffer S 2006 J. Appl. Phys. 100 051606
|
[4] |
Lim S H, Rastogi A C and Desu S B 2004 J. Appl. Phys. 96 5673
|
[5] |
Cooke A H, Jones D A, Silva J F A and Wells M R 1975 Solid State Phys. 8 4083
|
[6] |
Springis M, Sharakovsky A, Tale I and Rogulis U 2005 Phys. Status Solidi C 2 511
|
[7] |
Nishimatsu T, Terakubo N, Mizuseki H, Kawazoe Y, Pawlak D A, Shimamura K and Fukuda T 2002 Jpn. J. Appl. Phys. 41 365
|
[8] |
Knierim W, Honold A, Brauch U and Durr U 1986 J. Opt. Soc. Am. B 3 119
|
[9] |
Babu K E, Veeraiah A, Swamy D T and Veeraiah V 2012 Chin. Phys. Lett. 29 117102
|
[10] |
Hörsch G and Paus H J 1986 Opt. Commun. 60 69
|
[11] |
Fukuda T, Shimamura K, Yoshikawa A and Villora E G 2001 Opto-electron. Rev. 9 109
|
[12] |
Takahashi H and Onaka R 1977 J. Phys. Soc. Jpn. 43 2021
|
[13] |
Chao E C T, Evans H T, Skinner B J and Milton C 1961 Am. Mineral. 46 379
|
[14] |
Zhao Y, Weidner D J, Parise J B and Cox D E 1993 Phys. Earth Planet. Inter. 76 1
|
[15] |
Zhao Y, Weidner D J, Parise J B and Cox D E 1993 Phys. Earth Planet. Inter. 76 17
|
[16] |
Zhao Y, Weidner D J, Ko J, Leinenweber K, Liu X, Li B, Meng Y, Pacalo R E G, Vaughan M T, Wang Y and Yeganeh-Haeri A 1994 J. Geophys. Res. 99 2871
|
[17] |
Zhao Y, Parise J B, Wang Y B, Kusaba K, Vaughan M T, Weidner D J, Kikegawa T, Chen J H and Shimomura O 1994 Am. Mineral. 79 615
|
[18] |
Chen J, Liu H, Martin C D, Parise J B and Weidner D J 2005 Am. Mineral. 90 1534
|
[19] |
Zhao Y and Weidner D J 1993 Phys. Chem. Miner. 20 419
|
[20] |
Andersen N H, Kjems J K and Hayes W 1985 Solid State Lonics 17 143
|
[21] |
Seretlo J R, Martin J J and Sonder E 1976 Phys. Rev. B 14 5404
|
[22] |
Sevonkaev I, Goia D V and Matijević E 2008 J. Colloid Interface Sci. 317 130
|
[23] |
Zhang X M, Quan Z W, Yang J, Yang P P, Lian H Z and Lin J 2009 J. Colloid Interface Sci. 329 103
|
[24] |
Li L and Weidner D J 2012 Phys. Earth Planet. Inter. 194–195 98
|
[25] |
Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
|
[26] |
Vanderbilt D 1990 Phys. Rev. B 41 7892
|
[27] |
Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
|
[28] |
Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
|
[29] |
Pack J D and Monkhorst H J 1977 Phys. Rev. B 16 1748
|
[30] |
Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
|
[31] |
Milman V, Winkler B, White J A, Packard C J, Payne M C, Akhmatskaya E V and Nobes R H 2000 Int. J. Quantum Chem. 77 895
|
[32] |
Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
|
[33] |
Martin C D, Chupas P J, Chapman K W and Parise J B 2007 J. Appl. Crystallogr. 40 441
|
[34] |
Luaña V, Costales A and Pendás A M 1997 Phys. Rev. B 55 4285
|
[35] |
Geguzina G A and Sakhnenko V P 2004 Crystall. Rep. 49 15
|
[36] |
Mulliken R S 1955 J. Chem. Phys. 23 1833
|
[37] |
Segall M D, Pickard C J, Shah R and Payne M C 1996 Mol. Phys. 89 571
|
[38] |
Segall M D, Shah R, Pickard C J and Payne M C 1996 Phys. Rev. B 54 16317
|
[39] |
Ambrosch D C and Sofo J O 2006 Comput. Phys. Commun. 175 1
|
[40] |
Fox M 2001 Optical Properties of Solids (New York: Oxford University Press)
|
[41] |
Wooten F 1972 Optical Properties of Solids (New York: Acadmic Press) p. 179
|
[42] |
Maqbool M, Amin B and Ahmed I 2009 J. Opt. Soc. Am. B 26 2181
|
[43] |
Maqbool M, Kordesch M E and Kayani A 2009 J. Opt. Soc. Am. B 26 998
|
[44] |
Srikant V and Clarke D R 1997 J. Appl. Phys. 81 6357
|
[45] |
Murtaza G, Ahmad I, Maqbool M, Rahnamaye Aliabad H A and Afaq A 2011 Chin. Phys. Lett. 28 117803
|
[46] |
Secuk M N, Dogan E K, Aycibin M, Erdinc B and Akkus H 2013 Am. J. Mod. Phys. 2 77
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|