Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 034703    DOI: 10.1088/1674-1056/23/3/034703
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Three-dimensional numerical simulation of crown spike due to coupling effect between bubbles and free surface

Han Rui (韩蕊), Zhang A-Man (张阿漫), Li Shuai (李帅)
College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Abstract  The motion of gas bubbles beneath a free surface will lead to a spike of fluid on the free surface. The distance of the bubbles to the free surface is the key factor to different phenomena. When the inception distance varies in some range, crown phenomenon would happen after the impact of weak buoyancy bubbles, so this kind of spike is defined as crown spike in the present paper. Based on potential flow theory, a three-dimensional numerical model is established to simulate the motion of the free-surface spike generated by one bubble or a horizontal line of two in-phase bubbles. After the downward jet formed near the end of the collapse phase, the simulation of the free surface is performed to study the crown spike without regard to the toroidal bubble’s effect. Calculations about the interaction between one bubble and free surface agree well with the experimental results conducted with a high-speed camera, and relative error is within 15%. Crown spike in both single-and two-bubble cases are simulated numerically. Different features and laws of the motion of crown spike, depending on the bubble-boundary distances and the inter-bubble distances, have been investigated.
Keywords:  bubble      free surface      three-dimensional numerical model      crown spike  
Received:  26 May 2013      Revised:  28 July 2013      Accepted manuscript online: 
PACS:  47.55.dd (Bubble dynamics)  
  47.55.dr (Interactions with surfaces)  
  47.11.Hj (Boundary element methods)  
Fund: Project supported by the Major Basic Research Project of National Security of China (Grant No. 613157) and the Excellent Young Scientists Fund of China (Grant No. 51222904).
Corresponding Authors:  Zhang A-Man     E-mail:  zhangaman@hrbeu.edu.cn

Cite this article: 

Han Rui (韩蕊), Zhang A-Man (张阿漫), Li Shuai (李帅) Three-dimensional numerical simulation of crown spike due to coupling effect between bubbles and free surface 2014 Chin. Phys. B 23 034703

[1] Gibson D C 1968 The Third Australasian Conference on Hydraulic and Fluid Mechanics, November 25–29, 1968 Sydney, Australia, p. 210
[2] Chahine G L 1977 Trans. ASME Ser. I. J. Fluid Eng. 99 708
[3] Blake J R and Gibson D C 1981 J. Fluid Mech. 111 123
[4] Voinov O V and Voinov V V 1975 Sov. Phys. Dokl. 20 179
[5] Blake J R, Taib B B and Doherty G 1987 J. Fluid Mech. 181 197
[6] Zhang A M and Yao X L 2008 Acta Phys. Sin. 57 1662 (in Chinese)
[7] Wang Q X, Yeo K S, Khoo B C and Lam K Y 1996 Theoret. Comput. Fluid Dynamics 8 73
[8] Wang Q X, Yeo K S, Khoo B C and Lam K Y 1996 Comput. Fluids 25 607
[9] Zhang A M, Yang W S, Huang C and Ming F R 2013 Comput. Fluids 71 169
[10] Tomita Y and Kodama T 2001 IUTAM Symposium on Free Surface Flows, July 10–14, 2000 Birmingham, UK, p. 303
[11] Robinson P B, Blake J R, Kodama T, Shima A and Tomita Y 2001 J. Appl. Phys. 89 8225
[12] Pearson A, Cox E, Blake J R and Otto S R 2004 Eng. Anal. Bound. Elem. 28 295
[13] Connor J G and Higdon C E 1996 NSWCDD/TR-96/178
[14] Kolsky H, Lewis J P, Sampson M T, Shearman A C and Snow C I 1949 Proc. R. Soc. Lond. A 196 379
[15] Longuet-Higgins M S 1983 J. Fluid Mech. 127 103
[16] Rogers J C W and Szymczak W G 1997 Phil. Trans. R. Soc. Lond. A 355 649
[17] Zhang A M, Wang C, Wang S P and Cheng X D 2012 Acta Phys. Sin. 61 084701 (in Chinese)
[18] Li S, Zhang A M and Wang S P 2013 Acta Phys. Sin. 62 194703 (in Chinese)
[19] Dadvand A, Shervani-Taba M T and Khoo B C 2011 Int. J. Adv. Manuf. Technol. 56 245
[20] Fong S W, Adhikari D, Klaseboer E and Khoo B C 2008 Exp. Fluids 46 705
[21] Dadvand A, Khoo B C, Shervani-Tabar M T and Khalilpourazary S 2012 Eng. Anal. Bound. Elem. 36 1595
[22] Newman J N 1977 Marine Hydrodynamics (1st edn.) (London: MIT Press) p. 131
[23] Cole R H 1948 Underwater Explosions (1st edn.) (Princeton, NJ: Prinston University Press) p. 164
[24] Rungsiyaphornrat S, Klaseboer E, Khoo B C and Yeo K S 2003 Comput. Fluids 32 1049
[25] Li Z R, Sun L, Zong Z and Dong J 2012 Acta Mech. Sin. 28 51
[26] Zhang A M and Yao X L 2008 Acta Phys. Sin. 57 339 (in Chinese)
[27] Wilkerson S A 1990 A Boundary Integral Approach to Three-Demensional Underwater Explosion Bubble Dynamics (Ph.D. Dissertation) (Baltimore: Johns Hopkins
[28] Klaseboer E, Fernandez C R and Khoo B C 2009 Eng. Anal. Bound. Elem. 33 796
[29] Lee M, Klaseboer E and Khoo B C 2007 J. Fluid Mech. 570 407
[30] Buogo S and Cannelli G B 2002 J. Acoust. Soc. Am. 111 2594
[1] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[2] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[3] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[4] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[5] Current-driven dynamics of skyrmion bubbles in achiral uniaxial magnets
Yaodong Wu(吴耀东), Jialiang Jiang(蒋佳良), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(7): 077504.
[6] Nanobubbles produced by hydraulic air compression technique
Xiaodong Yang(杨晓东), Qingfeng Yang(杨庆峰), Limin Zhou(周利民),Lijuan Zhang(张立娟), and Jun Hu(胡钧). Chin. Phys. B, 2022, 31(5): 054702.
[7] Effect of nonlinear translations on the pulsation of cavitation bubbles
Lingling Zhang(张玲玲), Weizhong Chen(陈伟中), Yang Shen(沈阳), Yaorong Wu(武耀蓉), Guoying Zhao(赵帼英), and Shaoyang Kou(寇少杨). Chin. Phys. B, 2022, 31(4): 044303.
[8] Helium bubble formation and evolution in NiMo-Y2O3 alloy under He ion irradiation
Awen Liu(刘阿文), Hefei Huang(黄鹤飞), Jizhao Liu(刘继召), Zhenbo Zhu(朱振博), and Yan Li(李燕). Chin. Phys. B, 2022, 31(4): 046102.
[9] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[10] Enrichment of microplastic pollution by micro-nanobubbles
Jing Wang(王菁), Zihan Wang(王子菡), Fangyuan Pei(裴芳源), and Xingya Wang(王兴亚). Chin. Phys. B, 2022, 31(11): 118104.
[11] Evolution of helium bubbles in nickel-based alloy by post-implantation annealing
Rui Zhu(朱睿), Qin Zhou(周钦), Li Shi(史力), Li-Bin Sun(孙立斌), Xin-Xin Wu(吴莘馨), Sha-Sha Lv(吕沙沙), and Zheng-Cao Li(李正操). Chin. Phys. B, 2021, 30(8): 086102.
[12] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[13] Investigation of cavitation bubble collapse in hydrophobic concave using the pseudopotential multi-relaxation-time lattice Boltzmann method
Minglei Shan(单鸣雷), Yu Yang(杨雨), Xuemeng Zhao(赵雪梦), Qingbang Han(韩庆邦), and Cheng Yao(姚澄). Chin. Phys. B, 2021, 30(4): 044701.
[14] Comparison of helium bubble formation in F82H, ODS, SIMP and T91 steels irradiated by Fe and He ions simultaneously
Bingsheng Li(李炳生), Zhen Yang(杨振), Shuai Xu(徐帅), Kongfang Wei (魏孔芳), Zhiguang Wang(王志光), Tielong Shen(申铁龙), Tongmin Zhang(张桐民), and Qing Liao(廖庆). Chin. Phys. B, 2021, 30(3): 036102.
[15] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
No Suggested Reading articles found!